UNIVERSITYoF
PORTSMOUTH

»

Using Machine Learning to Create a
Human-Like AI Opponent to Combat
Ladder Anxiety

Baha Alfararjeh

UP2157533

Computer Science BSc
PJE40

Supervisor: Carrie Toptan

2025

UP2157533

Abstract

Neural networks (NNs) have applications in many industries, with the gaming industry
specifically being oft neglected despite being ripe with potential advancements and
applications. NNs can be used to enhance and replace archaic decision-tree-based Al
agents that dominate the current gaming landscape with agents that can adapt to data,
enabling more dynamic and perceived intelligent behaviours in game characters.
Primarily, the genre of Fighting Games suffers the most from this issue, a genre where
computer-controlled opponents often utilise input-reading and perfect reaction times to
ultimately provide a distinctly robotic playing experience, an experience with
unfortunately no alternative without human interaction. This project aims to create a
proof-of-concept solution to the existing solution of CPU opponents in fighting games
with respect to the problem of providing alternative methods of play to those who suffer
from “Ladder Anxiety,” a common anxiety in gamers that stems from the fear of

engaging online with other human beings.

Acknowledgements

I would like to firstly acknowledge my project supervisor, Carrie Toptan, who provided
invaluable help throughout the duration of this dissertation and without whom I would

have been left unanswered on too many questions.

I would also like to thank my father, for reminding me to look after myself while working
on my studies, as well as all my other family and friends who were there to give me
advice, help me destress, and motivate me to push myself in completing this dissertation

to the best of my ability.

Contents

1 INtroduction ... 8
1.1 Footsies, Neural Networks, and Ladder ANXiety.......ccccoveveriiveeiineniiiinesiinnens 8
1.2 Project AIm, and ODJECLIVESuievuiiiiiiiiiiii et 10

1.2.1 Project ATM...coiiiciiiiciiciiicee e 10
1.2.2 Project ObJECtIVES......cueiviiiiiiiiiiiiiiieie e 10
1.3 Project CONSIAINLS.......cciviiiiiiiiiiii it 11
1.4 LOg OF RISKS...eoiiiiiiieiiiee s 12
1.5 Project Deliverables.........ccoouiiiiiiiiiiieiieeiee e s 13
1.6 Project APProachcocooiiiiiiiiiiieee s 14
1.6.1 The Agile Project Management Methodologycccccvvvvinennenn. 14
1.7 Research APProachcccviiiuiiiiiiiiiiiie i 15
1.7.1 Time Management..........cccueiueererniieeniee e 15
1.8 Legal, Ethical, Professional, and Social ISSUEScccccuvriiriiiiiiieiieninnne 15
L.8.1 Legal oo 15
1.8.2 Ethical....ccoooiiiiii e 16
1.8.3 Professionalcccoiiiiiiiiiiiiie e 16
L.8.4 SOCIAL ..ot s 16
1.9 SUMMATY ...t 16

2 Literature RevVIieWcccoociiiiiiiiiii 17
2.1 TNEPOAUCTION ..t 17
2.2 Evaluation of Existing Solutions and Utilised Methods................cccoovennne. 17
2.3 SUIMIMATY .eeiiieiiieeiee et ns e e e nne e e e e nne e enre e 21

3 The Artefactoooiii e 22
3.1 INEOAUCTION ..ottt 22
3.2 Requirement SPECIfiCAtIONccviriiiiieiiiiiee e 22

32,1 MUSEHAVE oo 22
3.2.2 Should Haveccooiiiiiieiic s 23

I T 070 01 [l & £ 27T 23

CONTENTS UP2157533

324 Won’t Have......oooooiiiiiiiiiii i 24

3.3 SUIMMATY ..eoiiiiiieiicitie et 24
4 TT DESIGN ...ooviiiiiiiiiii 25
4.1 INrOdUCHION ..oiviiiiiiicic e 25
4.2 THE DIFCCIOT....cueiiiiiiiiiesie et 25
4.3 The MiddIeman..........cccueiiiiiiieiiii s 27
4.4 Pre-processing the Data.........ccccovvviiiiiiiiiiicii e 28
4.4.1 Parsing the Data..........ccooveiiiiiiiiiiiic e 29

4.4.2 NOIMALISAtION ..eouviiiiiiiieiiieie e 29

4.5 The Neural NetWorkccciiiiiiiiiici e 33
4.6 Selection of API and Programming Languagecccccvvvervviiniecinennennn 34
4.7 Selection of Programming Languageccccvvvveriirieiinieeneee e 34
4.8 Data DESIZN ..eeuvieiiiiiiieitie ittt 34
4.9 Feature ENGINEEIING.......cciviviiieiiiiiiiie et 35
4.10 MoOdel ATChItECEUTEeeuviiiieiiieic e 36
4.11 Training PIpelineccccooiiiiiiiiiii e 36
4.12 SUMMATY ... 37
5 Development............cccooooiiiiiiiiii 39
5.1 INrOAUCHION ..ot s 39
5.2 The DITECIOT ... eiiiiiiiiieeec e 39
5.2.1 Function Implementation...........cccoooveiviiieniiniie e 39

5.2.2 Farming Training Datacccoceviiiiiiiiiiiiiie e 40

5.3 The Middleman...........ccociiiiiiiiiiiiiici e 41
5.3.1 The Footsies CHent...........cccurieiiiiiierieiieeseceee e 41

5.3.2 The Python Server........cccccovviiiiiiiiiiiiiic e 43

5.3.3 Controlling the Client and Server............ccccvvviviiiiiiiiiciiee 43

5.4 PrE-PIrOCESSINE ..eeiuviirieieiiieesieeiee st nre e 44
5.4.1 Parsing the Data.........ccccoviiiiiiiiiiiie 44

5.4.2 Normalising the Data............ccovviiiiiiiniiiiiii 47

5.5 The Neural NetWork ..o 49
5.5.1 Sequence GeNerationc.cceiveruiiieninirisieiiere e 49

5.5.2 Model Creation........cccveiieiriiieiieieiiesee s 51

553 Main Methodcooviiiiiiiiii e 52

CONTENTS UP2157533

5.6 GamMe INTEGTAtION ..eeiuvviiiiiie ittt sbee e 52
5.6.1 The Predictor Class........cocueiiieiiiniiieiie e 53

5.6.2 Pre-Processing Live INPULS.......cccccoveeiiiiiiiiiiccecec e 53

5.6.3 PrediCtions ..occ.ecieeeiciieciee e 54

5.6.4 The Director and The Middlemancccceeviiiiiiiieniienienniee, 55

5.7 GitHUD REICASE......citiiiiiiiiieiii ettt 57
5.8 SUMMATY....ccoiiiiiiiiii 58

6 TeStinG........coociiiiiiiii 59
6.1 INEOAUCTION ..ottt et 59
6.2 Initial Model ReSULILScooiiiiiiiiiiiee e 60
6.3 Validation Metrics and Loss FUNCHIONScccoeveiiiiiiiiiciieniccceeseces 61
6.3.1 Weighted Binary Cross Entropyc.ccccovvviiiiiinienieiincneeeens 61

6.3.2 F Score and Leniencyc.ccvvvrviiiiiiiiniiiin i 62

6.4 Hyperparameter TUNINGcoiiiiiiiiiie e 65
6.5 Feature ENgINEETiNg........ccccviiiiiiiiiiiiieiieie et 66
6.6 Choosing the Final Modelcoooiiiiiiiie e 71
6.7 Final Model ADIIILYocoviviiiiiiciiieee e 73
6.8 SUIMMATY ...c.iiiiiiiiiiiiie et 74

7 Evaluation ... 75
7.1 INEOAUCTION .o 75
7.2 Evaluation Against Requirementscccooeriieriinienienniee e 75
7.3 Evaluation Against the Project Problem.............cccocoviiiiiiniii, 76
7.4 Evaluation of the Agile PMM..........cooooiiiiiiiiiiiiie 76
S T O 45 Te 131 PRSPPI 77

8 COMCIUSION ... 78
8.1 CONCIUSIONS ...ttt 78
8.2 PrOJECt Aviiiiiiii e 78
8.3 Future ConsSiderations.........c.cueiiuieriiiiiiiesiieeiiesiie et 78
8.4 Final REfIECtioNncccueiiuiiiiiiiii e 79

9 Appendix A: Ethics Form ... 80

CONTENTS UP2157533

10 Appendix B: Gantt Chartccoooiiiii 81
11 Appendix C: Project Initiation Documentcccccoo i 82
12 ApPendix D: LOGSoooviiiiiiiiii 90
13 Appendix E: GloSSarycccccooiiiiiiiiiii e 113
14 BibliograpRhy.........cccooiiiiiiiiii s 115

Chapter 1

Introduction

If I had more time, I would’ve written

a shorter letter

Blaise Pascal, (1657)

1.1 Footsies, Neural Networks, and Ladder Anxiety

“Footsies,” created by solo developer “HiFight,” is a simplistic 2D video game within
the “Fighting Game” genre. It simplifies the wider concepts found in the genre to their
basics and emphasises mastery of these fundamentals. The “Fighting Game” genre is
reputable for its competitiveness and competition between two individuals as well as its
visuals, which can either be presented in a realistic or fantasy manner (Hosch, 2024).
Throughout this paper, fighting game jargon will be used frequently. A glossary is
available at the end of this paper. “Footsies” operates with three buttons: two for
bidirectional movement and one for attacks. The attack button can be pressed for a normal
attack, or held for a special, and holding any direction while performing these attacks
results in an alternative normal/special, respectively. A special move can also be executed
by pressing attack during the animation of a normal move, provided the normal contacted
the enemy. Special attacks are the only attacks capable of knocking out the opponent.
Each character has three guard points, depletion of these removes a character’s ability to
block, causing a guard break instead, leaving the enemy open to a follow up. The game
loop generally consists of utilising normals and reacting to either a hit or a block and

performing a follow up special for a knockout (should your normal hit.) This emphasises

INTRODUCTION UP2157533

reactions as well as spacing: “whiffing” a normal (i.e. missing an attack) will leave the

player open to a punish attack and usually a knockout. First to three knockouts wins.

“Ladder Anxiety” is defined as the tendency to view competition in video games as
threatening, or intimidating, in turn causing a response of anxiety. “Ladder” here
referring to a commonly used system within video games that assigns an “Elo” to each
player, which increases when winning and decreases when losing (Zoet, 2017). This
anxiety can lead to increased heart rate, anxiousness, and increased levels of surface
electromyography (sEMG) activation which triggers increased masseter muscle
activation, which can lead to future cervical posture problems (Bueyes-Roiz et al., 2023).
Competition in individual sports athletes results in higher levels of anxiety/depression
than team sports athletes (Pluhar, 2019) which is why this problem becomes in regard to
the genre of “Fighting Games.”

This anxiety is common, in a study of twelve cyberathletes most experienced symptoms
of somatic anxiety (Whalen, 2013), which reinforces that this anxiety becomes more
prevalent the stronger the competition, and in turn how invested the player is. This
anxiety could cause players from any level to struggle enjoying the genre, which is the

key reason finding and implementing a solution is important.

The only alternative to real opponents are Al controlled opponents (colloquially called
CPUs) who usually operate with inhumane reaction times or input reading, allowing them
to manipulate the game state to give them an unfair edge (Liu, 2017), and more complex
Al that can surpass human-level performance without these tools have yet to be
developed and implemented in mainstream fighting games (Oh, 2022). These Al
opponents can feel noticeably inhumane which ultimately creates a divide in the feeling

of playing a human versus a computer.

Neural networks provide an alternative solution to these Al opponents. Neural networks

(NNs) are a machine learning tool that operate by distinguishing linearly separable

INTRODUCTION UP2157533

classifiers. NNs are comprised of “neurons,” inspired by biological neurons (Hardesty,
2017), that have different weighted signals. These signals control the output of the final
network, and the weights are adjusted during the training processes. Ultimately, NNs are
designed to emulate tasks, whether it be image recognition or medical diagnoses, hence
were a NN to learn to emulate a human playing a fighting game, it could provide an
alternative solution to players looking to enjoy a game without requiring interaction with

another person.

1.2 Project Aim, and Objectives

1.2.1 Project Aim

This project aims to solve the problem of ladder anxiety by providing alternative methods
of play for those who experience it. Through the use of neural networks, a more authentic
alternative to the existing methods can be created, one that can hopefully provide a
satisfactory experience and one more akin to competition against a real human. Solving
this problem not only allows the people who suffer from this anxiety to enjoy their
passion again but also opens doors for people who may be hesitant to engage in this genre

of games due to their pre-existing anxiety.

1.2.2 Project Objectives
The objectives of this project are laid out below.

» To create a software that achieves all the requirements laid out in the
specification.

» Carry out thorough research regarding any design choices taken as to ensure the
final artefact is sophisticated in its design.

» To publish videos documenting progress for the purpose of keeping the project
supervisor in the loop as well.

» Embody the agile project management methodology in both development cycle
and the feedback pipeline.

10

INTRODUCTION UP2157533

1.3 Project Constraints

Time is the only major constraint faced in this project. The timeframe for the project is
limited, and components of the project such as gathering training data as well as iterating

on the network could prove lengthy.

11

INTRODUCTION

1.4

Log of Risks

UP2157533

Table 1.1 presents a log of all potential risks during the project development period.

Table 1.1: A log of all potential risks, their impacts, and mitigations

Risk Description Likelihood Impact Mitigation
Desktop/Laptop PC failure — Low Low Use University Provided PCs to
Failure unable to work complete my work
on home PC
Project Project Medium Medium Reorganise my priorities to
Schedule Risk elements take ensure my project is complete.
unexpected Sacrifice other uses of my time.
time to
complete
Scope Creep Project scope Low Medium Constant check-ins with my
is lost and supervisor and realignment of
objectives goals/standings
become vague
Communication Objectives Low High Constant check-ins with my
Failure aren’t supervisor to ensure they know
communicated what I am working on, what |
to my am aiming for, and what my
supervisor; final deliverables will be
project strays
from mark
scheme
Loss of Code I lose project Low High Ensure my code follows the 3-

code due to
corruption or

other

12

2-1 principle: three copies of
my code, two physical, one

cloud

INTRODUCTION UP2157533

indeterminate
factors
Unexpected The videos Medium Medium Videos will sacrifice visual
Workload documenting quality for quantity while still
my progress maintaining relevancy

take too long
to produce and
are hindering

me

1.5 Project Deliverables

The list of deliverables for this artefact is as follows:
» Complete project source code

The source code for the entirety of this project, both the original source code for the
“Footsies” game, as well as any and all additional files created to operate the neural

network. This will be available in the form of an online repository via GitHub.

> “Read Me” file.

A “Read Me" file containing all necessary requirements (libraries, software) for the
project to run on any Windows device. This file should also operate as a user guide and

will be available as a text file in the GitHub repository for the project.

» Video Documentation Series

A link to a playlist containing the entirety of the video documentation series created and

uploaded to YouTube.

» Final Report

A PDF copy of this final report is to be available with the final delivery of this project.

13

INTRODUCTION UP2157533

1.6 Project Approach

1.6.1 The Agile Project Management Methodology

The Agile Project Management Methodology will be the chosen PMM for this project.
The Agile PMM prioritises collaboration, feedback, iteration and reiteration over
comprehensive documentation, planning, and sequential development: primary focuses

of methodologies such as the Waterfall PMM (Thesing, 2021).

The main advantage of the agile PMM is that iteration and reiteration are essential to the
development cycle of an Al model, as optimising features such as training data selection,
which can affect a model’s performance i.e. overfitting (Ying, 2019). Furthermore, with
the author of this project’s limited domain knowledge, predicting and then allotting
timeframes for components becomes an unreasonable task, and a PMM that supports

constant change and does not necessitate strict time limits is ideal.

Some core values according to the Agile PMM Manifesto (Beck, 2001) are laid below.

» Harnessing change throughout the entire development cycle

This principle highlights issue/error management: each iteration improving and
welcoming change in a project and adapting to its needs as opposed to bug-fixing during

downtime through the traditional SDLC.

» Working software is the primary measure of progress.

Measuring progress through deadlines and checklists can limit freedom and creativity, as
well as stump workflows. By using working software to measure progress through the
project, understanding where progress lies in relation to the completion of the project

becomes trivial.

» Simplicity in maximising the amount of work not done.

Ensuring key features are prioritised as opposed to following planned and potentially
misaligned bells and whistles maintains project progress and prevents straying from the

end post.

14

INTRODUCTION UP2157533

Using the Agile PMM to both constantly observe where the project stands in its
development as well as realign goals/deadlines as necessary can guarantee the artefact

will be complete for the final deadline.

1.7 Research Approach

Secondary research will be the main form of conducted research with decisions being
made according to deduced and induced conclusions of that research. Scholarly articles,
research papers, and academic journals will provide excellent sources of secondary
information, and due to research within the field (specifically implementing neural
networks into fighting games) being limited, other less academic sources will be
researched and cited e.g. YouTube. The researching process involves taking a source and
creating a list of key points, conclusions, and evaluations, before using these to inform

decision making.

1.7.1 Time Management

Regardless of the Agile PMM, some time management and plan adherence are required
for the project. This will be done via maintaining a Gantt chart with estimated timeframes
for completion of different components. However, weekly logs will be written depicting
project progress, and within these logs both realignment of component deadlines (i.e. the
Gantt chart) as well as week-by-week goals will be laid out. This allows for prioritising
completion of work as the Agile PMM purports, as well as ensuring that deadlines are

met, while maintaining some flexibility.

1.8 Legal, Ethical, Professional, and Social Issues

1.8.1 Legal

» Copyright infringement. Despite using a game created by an individual developer,
a beta version of the game is available online with all the source code public, so
this will be a non-issue.

» Usage of libraries and APIs developed by others may cause issues, however due
to the fact that no money will be made from this project, this should remain

unproblematic.

15

INTRODUCTION UP2157533

1.8.2
>

1.8.3

1.84

1.9

Ethical

While Al has inherent ethical issues, the nature of this project as well as how data
such as training data will be gathered ensures no issues should arise.

Should sufferers of ladder anxiety test the Al, choosing to/to not reveal the
opponent as an Al with the intention of gauging how “real” the opponent felt
could be an issue: this will be mitigated by simply not testing the Al against real
humans.

Should the Al be tested online, online opponents not knowing their opponent is
an Al may be problematic. This can again be mitigated via the same method

outlined above.

Professional

Preventing bias in the project, as strong domain knowledge of fighting games
could influence the design of the model negatively. Mitigation for this comes
inherently via the nature of neural networks and their effective inability to be
persuaded.

Conflict of interest, where a specific vision for the model could be imagined, one
that more aligns with personal interests as opposed to the interest of the project.
By stating a project specification that clearly defines requirements that both

support personal and project interests, this problem can be mitigated.

Social

. Although the documentation videos will be available online for viewers to see,

this should not spawn any social issues.

Summary

This chapter lays not only the groundwork of the project, but also the context, and

ensuring this context is prioritised during the project will only guarantee the final artefact

accomplishes all the declared aims and objectives.

16

Chapter 2

Literature Review

2.1 Introduction

The purpose of the literature review is to deepen the author’s domain knowledge of neural
networks. Research, however, within this field is limited, and academic sources
implementing neural networks into fighting games are scarce. Regardless, this literature
review will cover present and past existing solutions to the project problem, as well as
evaluate them for their efficacy to derive conclusions that can inform design decisions
now and later during project design and development. Not only will solutions be
evaluated for their efficacy in creating an Al model that is simultaneously human like
and capable of providing a good level of competition (features of the artefact that are
outlined in detail in the artefact specification) but will also discuss the different machine

learning techniques used to support the selection of neural network type for this artefact.

2.2 Evaluation of Existing Solutions and Utilised Methods

Feedforward and recurrent neural networks (NNs) are both discussed in the following
example Al agents, and so a brief overview of them is outlined below. Simply, unlike
feedforward NNs (Zell, 2019), recurrent NNs can store and remember data, with Long
Short-Term Memory (LSTM) cells (Hochreiter and Schmidhuber, 1997) specifically
being able to tackle the issue of gradient vanishing as the neural network grows
(Hochreiter, 1988). Additionally, considerations between supervised and reinforcement
learning approaches will be discussed. Supervised learning operates by training the

model on labelled pairs data sets: the actual data, and the expected result. The NN predicts

LITERATURE REVIEW UP2157533

an output and then uses the labelled data to compare errors and adjust its weights
accordingly (Mohri et al., 2012). Reinforcement learning defines certain actions as
desired and undesired via a reward function. And the network then repeatedly adjusts

itself to maximise the reward it achieves (Kaelbling et al., 1996).

The aim of this project is to create an Al model using neural networks that can both play
Footsies skilfully and in a manner that is human-like. Because of this, reinforcement
learning is unlikely to prove optimal, as supervised learning is effectively required to
influence the manner in which the model players, i.e. like a human. However,

reinforcement learning approaches will still be discussed in the following review.

An Al created for the 2016 multiplayer game Blade & Soul (B&S) used an LSTM NN
with a deep reinforcement learning approach implemented with a “self-play” curriculum
to create an Al that achieved a win rate of 62% against professional players. Furthermore,
at the 2018 World Championship, battled against professional players without revealing
itself as an AI (Oh et al., 2019), with the commentators present unable to determine that
the model, under the moniker “DES KnightJ”, was in fact an Al, as shown in this footage

https://go0.gl/7VUTzV. This model was successful in providing an alternative method of

play (albeit as a proof of concept rather than a solution to ladder anxiety) and succeeded
in being both competitive and human like. The final artefact performing in a human-like
manner is incredibly pivotal to the overall solution; without feeling as if you are playing
a human, the solution will lack authenticity and will ultimately crumble. The B&S model
remaining undetected during blind matches is a feature that must be replicated in the final
solution and so influence from this solution must be considered. Although this seems a
strong advocation for reinforcement learning, in a talk held by the NCSOFT team (Chung
& Rho, 2019) it was revealed that one hundred simulations were trained simultaneously
on previous versions of itself, some of which had already been trained for several hundred
hours. This is echoed by Seijen (2011) who discusses that reinforcement learning models
are restricted in both time and space; something that is too constraining on this project.
Lack of training time could lead to poor results, something seen by Luo, (2019) in their

reinforcement-based Al model that was trained to play the fighting game “Mortal

18

https://goo.gl/7VUTzV

LITERATURE REVIEW UP2157533

Kombat,” using different reinforcement algorithms such as Proximal Policy Optimisation
(PPO). The final model was rudimentary, inhumane, and ultimately succumbed to a lack

of training time.

An Al agent created by Robison (2017) used a supervised learning approach in training
an Al for the FightingICE platform, a Java based fighting game used in Al development
competitions (Intelligent Computer Entertainment lab. Ritsumeikan University, 2024).
The Al model created was successfully able to emulate its training partner, although the
training partners used were Al, it stands to reason data collected by a human would lead
to a model that emulated a human, a hypothesis supported by Chaperot, (2006), who
implemented an artificial NN trained via human gameplay in a motocross game and
concluded that the adaptability of ANNs mean the model would retain human elements
in any situation. Despite the solution provided by Robison (2017) being efficient in its
emulation, it suffered from poor competitive ability with a win-rate of 20%, hypothesised
to be caused by the model’s training partners also serving as its opponents. Competitive
ability is important: the stronger the opponent, the more players can fight it, however
again, the Al feeling human is of much greater importance, and so supervised learning as
a means to ensuring proper emulation of human playstyle is a strong conclusion that can

be drawn from this solution.

Comparing the B&S Al to the Al created for FightingICE, the key difference is the use
of a LSTM recurrent neural network, versus the feedforward neural network used by the
FightingICE Al. While in the previous source discussed there was no evidence-backed
explanation for the poor win rate, the difference in performance between feedforward
networks and recurrent neural networks can be hypothesised to be the cause.
Furthermore, the use of a recurrent network also proved effective in successfully
providing a solution to the problem in “Neural Knight.” “Neural Knight” (Polyrogue
Games, 2019) is a recurrent neural network trained via supervised learning that was
taught to play the 3D fighting game For Honor. The model was able to achieve a modest
win rate of approximately 25% and pass a “Turing Test” (Hodges, 2010) of sorts, albeit

with a small sample size, that determined the majority of individuals (both novice and

19

LITERATURE REVIEW UP2157533

advanced players) could not identify the human in a set of 4 clips, 3 being played by the
Al and the final being the human. This solution is almost ideal, with the model being
both competitive (albeit at a novice level) and human like. The only caveat would be the
strength of the model; however, this was mostly due to extremely limited training data:

only 2 hours of training data was gathered and used.

“MariFlow” is a LSTM recurrent neural network created by the online personality
“Sethbling” that was taught to play Super Mario Kart using a supervised learning
approach (Sethbling, 2017). The goal of the neural network at any given point in time
was to predict the optimal output. The training data used to reinforce these predictions
was hours of gameplay that Sethbling had recorded of himself playing, which was
supplemented by interactive training sessions in which the neural network and himself
passed control back and forth, a method used before to increase efficiency in image
labelling neural networks (Langkvist et al., 2016). The final result was an Al that was

skilful and human like, all achieved within a reasonable timeframe.

The ability of the models within “Neural Knight” and “MariFlow” to completely emulate
human play via the use of supervised learning advocates strongly to implement this

method of learning to the artefact, as it aligns exactly with the project specification.

It is impossible to determine at this stage in the project with the author’s current domain
knowledge and experience the optimal solution based on both the desired outcomes
specified in the artefact specification and the constraints of time and resources that are
being faced. However, considering the research performed a supervised learning
approach was determined as the best course of action, supplemented by an LSTM
recurrent neural network. The choice for an LSTM network specifically being due to the
better performing solutions (in this project’s specific use case) also using LSTM
networks, as well the importance of the network being able to remember previous
information to develop pattern recognition (Cho et al., 2007) and in turn emulate the style

in which humans approach fighting games. These choices were being made specifically

20

LITERATURE REVIEW UP2157533

due to the displayed efficacy of these methods in creating an Al that is both effective, and

human like.

2.3 Summary

Ultimately through systematic review it can be shown that neural networks have vast
applications within both the genre of fighting games and the wider gaming sphere, albeit
with scarce research. It is clear that utilisation of neural networks could create a better
solution to the existing project problem, should only the discussed implementations be
applied with an emphasis on combatting human anxiety, which is exactly the primary

goal of this artefact.

21

Chapter 3

The Artefact

3.1 Introduction

Existing solutions to the project problem ubiquitously fail in one aspect: they feel
distinctly robotic. CPU opponents in fighting games are often pre-scripted
(Lueangrueangroj and Kotrajaras, 2009) and use techniques such as input reading (Liu,
2017) to gain an advantage and even the playing field against human opponents. For the
solution to be successful, it must provide an alternative to these existing CPU opponents,
and so the requirement specification will be defined with the biggest priority in ensuring

the model plays in a human manner.

3.2 Requirement Specification

3.2.1 Must Have

1. The final artefact must be able to run on any Windows OS device and should
therefore contain:
a. Auser guide that includes requirements and operation instructions.

b. An executable that can be run to operate the artefact.

The final artefact being a downloadable and playable game serves the purpose of
generating feedback post this project’s completion that can lead to both improvements to
the specific model as well as wider feedback regarding Al models in fighting games. The
purpose of this project is to solve a problem, and a solution that cannot be used is not a

valid solution.

THE ARTEFACT UP2157533

2. The source code should consist of:
a. A “director” that can extract data from the game as it runs to be fed to the
“middleman.”
b. A “middleman” that can take data from the director and pass them to the
neural network, and vice-versa.
c. The neural network, which can take game state information and process

the optimum output.

Splitting the workload and working on each component individually while continuously
monitoring progress and readjusting deadlines is the core of the Agile PMM, and
designating three different “parts” of the software allows flexibility in managing the

workload.
3. The final agent should play in a human like manner.

Ultimately, the aim of this software is to be a lifelike Al that players who suffer from
social anxiety can play. Were the Al not lifelike, it will struggle, say, to “scratch the same

itch” that playing a real player does.

3.2.2 Should Have
1. The final agent should play in a manner deemed “strong” or “skilful.”

The higher level of play the agent can attain, the wider the range of players who would
be challenged by it becomes, allowing the solution to be viable for a larger array of the
project problem’s target. However, this artefact aims to simply show how a neural
network can be implemented to solve the problem, and so the maximising of the solution

area is not mandatory.

3.2.3 Could Have
1. Operational instructions to allow users to generate their own training data.

Allowing for end users to gather training data would have the benefit of allowing the
agent to grow stronger as well as be more capable against diverse play styles. While not
mandatory, the priority of a requirement such as this would be much greater were this

project to be commercialised.

2. Operation instructions to allow users to create/recreate agents.

23

THE ARTEFACT UP2157533

Creation of multiple agents in conjunction with the previous requirement of allowing
users to generate their own training data would result in a software that would allow any
user to train and create a network model to emulate their own playstyle. Implementing
this however would require efficient training techniques to ensure that masses of training

data would not be required, to ensure a pleasant user experience.

3.2.4 Won’t Have

1. Dynamic player selection: allowing the end user to choose a preferred player (one

or two) with the network controlling the other.

With how the network learns and trains, i.e. emulation of a specific player via prediction
of their inputs, the creation of two models (one for each player) proves too large a task

for the available timeframe.

3.3 Summary

The end goal of this project is to create an Al agent of a competent skill level that plays
in a way a human would, that can be used as an alternative to online play for those who

suffer from ladder anxiety. This specification has been created with that core idea in mind.

24

Chapter 4

IT Design

4.1 Introduction

With respect to the specification, design decisions needed to be considered for the

following components:

2. The “director”
3. The neural network

4. The “middleman”

The director would pass data to the middleman, which would pass data into the network,
and the process would be reversed to return the output of the network to the director.
While these three components were core to the software, there were other components to
be designed. Specifically, the data pre-processing pipeline, and these components will

also be discussed in this section.

4.2 The Director

The first component to be designed was the training data extraction component, or the
“director.” Gathering training data would prove the lengthiest task of the project,

therefore it was pivotal data extraction functions were completed first.

Within Footsies, a “Fighter” class controls both characters and instance variables within

the class handled information such as position, current action, and guard health.

IT DESIGN UP2157533

“BattleCore.cs” held all frame-to-frame operations. Hence it was decided within this file,

code responsible for extracting data would be implemented.

There were three decisions to handle in designing this component:

> What information should be extracted?
> How should it be extracted?
> How often should it be extracted?

What data would be extracted was a point of contention, however discussions with the
project supervisor and moderator influenced the final decision: that is, everything would
be extracted. Determining the best selection of data that the NN would benefit from was
an impossible task at this stage, and so extracting all data would allow for flexibility
during future testing and improving of the model. All public information available on the

screen was exported. The list of exported features is as follows:

A\

currentInput

position

velocity x

isDead

vitalHealth
guardHealth
currentActionID
currentActionFrame
currentActionFrameCount
isAlwaysCancelable
currentActionHitCount

currentHitStunFrame

YV V.V V V V V V V V V V

isInHitStun

Y

isAlwaysCancelable

The following variables, those relative to both the player one and player two character,

would be extracted. Note the presence of “currentlnput.” This variable represented the

26

IT DESIGN UP2157533

current button presses of a given player. While this was not public information, it needed
to be extracted; during training, the NN makes predictions on what it believes the best
input for the player is at a given moment, and without the true value of the player’s input

to compare, the NN would not be able to learn.

How and how often the data would be extracted were trivial considerations. Each frame,
the current value of each of these variables would be appended to a list, and at the end of
a round in which player one is victorious, the variables would be output into a text file,
separated by their relative frame counts. Ultimately, the network, which would be trained
via supervised learning, has no concept of winning or losing; it simply emulates the

training data. Therefore to get the model to win, it must learn off of wins.

4.3 The Middleman

The “middleman” component of the artefact would handle communication between
Footsies, operating in C#, and the neural network, operating in Python. After reaching
out to the project supervisor and Portsmouth alumni, a WebSockets client-server pairing

was determined the ideal choice.

WebSockets is a communication protocol that allows for bidirectional message exchange
between a server and a client. It operates quickly and seamlessly and is supported by any
device with a standard web browser (Mozilla, 2019). The two main reasons WebSockets

were chosen are as follows:
» Speed

WebSockets allow for sufficiently fast data transmission speeds, as game information
would need to be sent at every frame, and with the game running at sixty frames per

second, quick message exchanging was necessary.

27

IT DESIGN UP2157533

» Simplicity
The chosen method of communication needed to be simple to implement due to

unfamiliarity in the field as well as time management; spending too much time on inter-

process communication was simply not an option.

With the means of communication established, the middleman component required

design of the following methods:

» A method that can be called by the director to pass live game state information to
the middleman.

» Method(s) to feed data into the neural network and return an output.

» Method(s) to initialise and deactivate connection between the Footsies client and

Python server.

The method to pass data to the middleman was partly complete: the director would
already provide a function that extracted data from the game, all that was left to
implement would be a function that passed this data to the server. This function would
simply live inside “BattleCore.cs” and be called in place of the function that outputs the
training data. A queue was deemed necessary to feed data into the network. The
middleman would take live game data from the director and append it to a queue, which
would then be dequeued as they were passed to the WebSocket client. A queue ensured
no consistency issues would arise. Returning the output from the network however would
also happen in an analogous way, taking the output from the network, but passing it to
the Python server, which would then return it to the client. The method to initialise
connection would live inside “GameManager.cs,;” the file that handled launching the
game. With this, any errors in the Python server would be raised immediately during
launch. Deactivating the server however would happen internally: if the server detected

the client had shut down, then the server would terminate itself.

4.4 Pre-processing the Data

Arguably more important than the network itself is the pre-processing. The data needed
to be normalised to allow for the network to utilise it effectively, and although data had

been collected, it first needed to be parsed from the text files it was stored in to allow for

28

IT DESIGN UP2157533

pre-processing to occur. Efficiently pre-processing training data was pivotal for the
training process, with effective pre-processing showing an increase in classification
accuracy of 95% in a neural network trained on data pre-processed using methods such
as Min-Max Normalisation, Z-Score Normalisation, and Decimal Scaling Normalisation
(Mohd et al., 2013). The structure of the data pulled from the source code of the game
would determine which normalisation method would be selected. The source code
revealed that the relevant data, all stored in variables, had varying structure including
binary values, serial numbers, and Boolean values. Ergo, it was decided that
considerations for each variable were essential and ensuring proper normalisation for

each would be pivotal to the final efficacy of the model.

4.4.1 Parsing the Data

Pandas is an open-source library designed to create and manipulate easy to read data
structures for the Python programming language. Specifically, the Pandas “DataFrame”
class allows for the creation of a two-dimensional data structure that both allows for easy
processing as well as loading by the TensorFlow API. Using built in Python RegEx
module, efficient loading and parsing of each training data file could take place,
appending the results to a Pandas DataFrame. The parsing module would be written in

Python and would:

» Parse through all training data files within a specified directory.
» Create a Pandas DataFrame class object to hold all the data.

» Save this object for later reading.

All of these requirements could be achieved using the RegEx and Pandas libraries. By
simply opening each file and parsing each line for the extracted variables, a list could be

created with all values that could easily be appended to a Pandas DataFrame object.

4.4.2 Normalisation

Each variable stored in the training data must be normalised. The challenge comes in the
variance of data types: the training data consisted of discrete integers, continuous floats,
Boolean values, and bitmasks. The following is a breakdown of each variable and its data

type, as well as how it would be normalised.

29

IT DESIGN UP2157533

» currentInput

“currentInput’ 1s an integer variable that is responsible for determining the button presses
of a player at any given point in time. The range of this variable is 0 to 6 inclusive, and
upon further analysis appeared to be a bitmask that converts the binary output of the three
individual buttons (left, right, and attack) into a single integer. Using the Python server
to provide live feedback, with an update to the message sending function the integer-

button mapping was retrieved and is shown in Table 4.1.

Table 4.1: The bitmap for the current player input

C A R L
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

With this knowledge, bitwise operations could be applied to the parsed integer to convert
the single variable back into the three individual binary toggles for each button. Doing

this allows the network to see exactly what button(s) is being pressed at any given frame.

» position
There are two key things to note about the “position” variable: firstly, since there is no
vertical movement in this game, although the Y position of the fighters was grabbed
during data extraction, it can simply be dropped during the parsing progress. Secondly,
the range of this variable is a float, and normalisation of this would be simple. The
standard formula for min-max normalisation could be used, as seen in (1), which would

translate the position to a number from range 0 to 1.

30

IT DESIGN UP2157533

, _ x—min(x) 1))
"~ max(x) — min(x)

It was important to note however that the values observed for “min(x)” and “max(x)”
would need to be stored. During testing and playing, the network needed to be able to
scale the position value by the same factor used to normalise the training data, otherwise

the position observed by the network could be inaccurate.

» isDead, isAlwaysCancelable, isInHitStun

These three variables would all require the same normalisation process, and it was simply
to translate the Boolean flags to a binary representation, 1 and 0 for True and False,

respectively.

» velocity x

The “velocity x” variable is used by the game to translate a fighter’s position in instances
where they are propelled as opposed to controlled, such as when knocked back by a blow
or using an attack with forward movement. This value isn’t entirely continuous, although
the values ranged from -3 to 7, there were only approximately ten values the variable

could take. Regardless, the same normalisation process would be used as the “position’

variable (standard min-max normalisation)

> vitalHealth

“vitalHealth” served the same function as “isDead;” that being when a fighter’s health
was zero, they were dead. Because of this, the variable would be dropped during

preprocessing to avoid overwhelming the network.

» guardHealth

31

IT DESIGN UP2157533

“ouardHealth” 1s a discrete integer from range zero to three, and represented the amount
of guard points a fighter had remaining. Despite being discrete, minmax normalisation
as if it were continuous was deemed optimal. This was because although it was discrete,
the guard points did not represent different states and were simply a count of how much
guard a fighter had left and so treating them as a continuous variable from 0 to 1 would

allow the network to understand the meaning of this variable.

> currentActionlD

This was a discrete integer variable that took on different values according to the current
action the fighter was performing. Clearly because of this, it could not be treated as a
continuous variable, yet it still needed to be normalised due to the variable taking values
such as 300, 101, and 500. “One-hot” is the name of a group of bits of which only one
bit is ever “1”, while the others remain zero. The purpose of this is to allow for a simple
state representation of categorical data, which is exactly what “currentActionID” was.
Using one-hot encoding, the “currentActionID” variable could be split into multiple
indicator variables that could tell the network the current state of a fighter. Fortunately,
the Pandas API makes this trivial, using the “pandas.get dummies” method, which
allows for easy conversions of categorical data. During this stage of the product, it was
found within the source code that an ID map defining each move was included and is

shown below in Figure 4.1.

32

IT DESIGN UP2157533

public enum CommonActionID
{
STAND = 0,
FORWARD = 1,
BACKWARD = 2,
DASH_FORWARD = 10,
DASH_BACKWARD = 11,
N_ATTACK = 100,
B_ATTACK = 105,
N_SPECIAL = 110,
B_SPECIAL = 115,
DAMAGE = 200,
GUARD M = 301,
GUARD_STAND = 305,
GUARD_CROUCH = 306,
GUARD_BREAK = 310,
GUARD_PROXIMITY = 350,
DEAD = 500,
WIN = 510,

Figure 4.1: The action to ID mapping used by Footsies

» currentActionFrame, currentActionFrameCount, currentActionHitCount,

currentHitStunFrame

Upon exploring the Footsies source code, it was learnt that these four variables have no
bearing on the game state and are in fact used solely by the game to draw the fighter

sprites. Because of this, these three variables would be dropped during parsing.

With it decided how each variable would be normalised, it was now apparent how the

neural network would see the data, and so designing the network began.

4.5 The Neural Network

Before development of the neural network could begin, values for hyperparameters of
the network needed to be researched and considered. The following is a breakdown of
the immediate design considerations that needed to be made to commence development

of the network.

33

IT DESIGN UP2157533

4.6 Selection of API and Programming Language

The selected API for developing the neural network was the TensorFlow Keras
Functional API. TensorFlow is a well-known API that supports easy implementations of
neural network models while allowing for further scalability, and specifically the Keras
Functional API for its ability to support more flexible deep learning models (Keras Team,
2019). A 2019 paper that compared multiple Python libraries for machine learning
concluded that TensorFlow was the ideal library for deep learning, commenting on its
extensive documentation and features such as local GPU acceleration (Stan¢in & Jovic,
2019), with another 2022 paper praising TensorFlow for its Datasets module which
provided an easy way to train the network on data and create new abstractions during

runtime (Novac et al., 2022).

4.7 Selection of Programming Language

Python was chosen to be the programming language the model will be created in. This is
due to the project author’s experience with the language being high, as well as mitigating
unnecessary stress on time constraints that come from learning a new language.
Furthermore, once the TensorFlow Keras API had been selected, it was important to

choose a language which supported the API, which Python does.

4.8 Data Design

The nature of the data being used for training is time series data, where a time series is a
chronological sequence of observations on a variable of interest (Montgomery et al.,
2016). Because of this, determining the optimal sequence length, i.e. the number of inputs
that should be fed as a sequence to the network, is most important. Determining this
optimal sequence length, or in other words defining the Optimal Starting Point (OSP) of
a sequence as described by Zhong et al. (2025), is a both important and sometimes
disregarded part of time series forecasting. Choosing where to begin each sequence and
ensuring that only relevant contextual information is contained within the sequence is
crucial to the performance of the network. Fortunately, in this instance the time series is
relatively consistent, and although some rounds vary mildly in length, there are no abrupt

changes that could be misinterpreted by the network given any OSP. However, a sequence

34

IT DESIGN UP2157533

too short can derive the network of context, and too long could overwhelm the network.
For these reasons, it was determined the sequence length of the data being fed into the
network would be twenty frames long. This number would however be tested in search
for a more optimal number once the network was created. Next was splitting the data into
separate rounds. This could be done simply with the Pandas library using the “group by”
method. Splitting the data into rounds, those rounds can then be split into sequences of
size 20 (as justified above) before being fed into the network for training. Each round
acts as a mini dataset, with every sequence taken from a round being tested for the target
output. Aligning inputs and targets is simple. The current button presses for player one
would be dropped from the dataset and used as targets, and everything else used as an

input.

4.9 Feature Engineering

Feature engineering is an important part of the machine learning process. The
performance of a model can depend heavily on how data is represented, and feature
engineering is a way to capitalise on domain expertise to compensate for Machine
Learning (ML) models’ inherent weakness, i.e. their inability to extract and organise
valuable information from a dataset (Bengio et al., 2014). Feature selection is the process
of building more comprehensive datasets and prioritising important variables to reduce
noise in the network (Li et al., 2017), which T. Kavzoglu and Mather (2002) explain can
cause overfitting and introduce poorer generalisation capability. Because of this, it’s
important to select only necessary features to train the network. There are two techniques
to optimise feature selection with the first of which being domain expertise. The author
of this project being an avid Fighting Game expert and professional player meant that
there is prior understanding of the importance of different variables. The second of which
being statistical methods such as feature evaluation criterion, search procedures, and
model selection strategies (Leray and Gallinari, 1999). Another important consideration
to make was feature derivation, which is the process of manually creating new features
(Liu et al., 2020). The disclosure of features such as the relative distance between players
or whether a player is approaching or not could positively affect training speeds and

network accuracy. Primarily, only the features discussed in the design of the

35

IT DESIGN UP2157533

normalisation methods would be used, and during later testing the above two techniques

would be employed to optimise the network.

4.10 Model Architecture

A sequential model was the obvious choice as not only is it the simplest, it fits the
required structure of the network, i.e. a stack of layers that feed into three outputs (button
presses). It was important to start simple and optimise layer sizes and counts later;
Francois Chollet (2021) recommends sixty-four units when working with a large number
of features (46 classes in his case) and using an LSTM layer. The unit size 64 LSTM
layer would be supplemented with a dense layer of thirty-two units, and an output layer
which would consist of a size three dense layer, one for each output, with a sigmoid
activation function. The sigmoid activation function allows for each output to have an
independent probability while returning a 1 or 0 for a predicted button, pressed or
unpressed. The loss function is used to determine how well or poorly a model is
performing by calculating the accuracy of a model’s predictions compared to the real
target labels. Due to the use of a sigmoid activation function for the three outputs, binary
cross entropy was chosen as the loss function. Binary cross-entropy is used to measure
the difference between predicted binary outcomes and actual binary labels, where the
output of a cross-entropy function is a probability between 0 and 1, and the loss increases

as the prediction strays from the actual label (Ruby and Yendapalli, 2020).

Loss = —[y-log(y")+ (1 —y) -log(1—y")])

The above, (2), is the formula for the loss calculation, where y is the actual label and y*

is the predicted probability. The closer these two values are, the lower the loss.

4.11 Training Pipeline

The first task to handle would be splitting the data. To create the model, a training,
validation, and testing set would be required. The training data set would be used for
weight adjustment with the validation set used during the training process to tune

parameters such as model structure and loss/accuracy, and the test set is used at the very

36

IT DESIGN UP2157533

end to determine the final accuracy of the model. A standard split of 70%/15%/15% was
decided upon. From the training data, the rounds would need to be extracted before being

sequenced and fed into the network. This could be performed easily using built in

methods from the Pandas API.

Training the network involved defining certain hyperparameters. These were:

» Sequence length
» Epochs
» Batch size

» Learning rate

The sequence length was already determined to be twenty. Epochs simply refers to the
amount of passes the network will do over the training data, and a standard number of
ten would be used. The batch size would be the number of sequences fed into the network
at once, this is again something that could be tuned during training, hence sixty-four
would be selected for now and potentially changed later. Next was the learning rate,
which would be set to 0.001, which was the default for the chosen optimiser, “Adam”.
“Adam” stands for Adaptive Moment Estimation and is the standard optimiser for Keras
sequential networks. The optimiser controls how weights are adjusted given the current
loss function and using Adam as the optimiser would not change during development.
Lastly came monitoring metrics and saving model checkpoints. Metrics are displayed
automatically while training via the Keras “model.fit()” function, however model saving
needed to be explicitly written in the code. A model could be saved at each epoch if the
value being monitored is at a new best. The most common values to be monitored are the
loss and accuracy, however it was clear immediately that loss would be the variable to
monitor. Simply put, the network’s predictions don’t need to match 100%, they only need

to be close to the true label, so monitoring this would be ideal.

4.12 Summary

The three core components of the artefact had been designed. With this, development

could operate smoothly, however with the project author’s limited subject domain, it’s

37

IT DESIGN UP2157533

possible and likely that some considerations had been forgotten, so the following section

will cover both development and any design changes that arose.

38

Chapter S

Development

5.1 Introduction

This section covers the development of all components designed in the previous chapter

as well as the solving of any problems that arose during development.

5.2 The Director

Extracting training data from rounds needed to be completed perfectly: any issues within
the final training dataset could be detrimental during network training. Because of this,
try/catch statements were implemented liberally where required, as to ensure any errors

would be raised and fixed promptly.

5.2.1 Function Implementation

The function implementation for the previously discussed extraction of training data was
simple. The “UpdateFightState” in “BattleCore.cs” called once each frame, handling
game operations. In this function, shown in Figure 5.1, a simple frame timestamp was
added, as well as a string variable which would add the player one/two label, the name
of the variable, and the current state of the variable for all variables to be extracted. This
string was then copied with its associated frame number to another variable which would
contain all the frames up until that point, and the final output would be exported to a text

file at round end, determined by the “UpdateEndState” function.

DEVELOPMENT UP2157533

// increments the current frame (effectively a timecode)
currentFrameCount++;

// appends data to trainingData string

newGameState = currentFrameCount + ": " +

"P1_INFO:" +

"currentInput (" + plInput.input +

")position" + fighterl.position +

"velocity x(" + fighterl.velocity x +

")isDead(" + fighterl.isDead +

")JvitalHealth(" + fighterl.vitalHealth +

"YguardHealth(" + fighterl.guardHealth +

")YcurrentActionID(" + fighterl.currentActionID +
")currentActionFrame(" + fighterl.currentActionFrame +
")YcurrentActionFrameCount (" + fighterl.currentActionFrameCount +
")isAlwaysCancelable(" + fighterl.isAlwaysCancelable +
"YcurrentActionHitCount(" + fighterl.currentActionHitCount +
")YcurrentHitStunFrame(" + fighterl.currentHitStunFrame +
")isInHitStun(" + fighterl.isInHitStun +
")isAlwaysCancelable(" + fighterl.isAlwaysCancelable +

"y

trainingData += newGameState;

Figure 5.1: Exporting data in “BattleCore.cs”

Note: Within the “Fighter” class, it was necessary to make the variable that determines
whether the round was a victory public, as to be able to use it to identify round victories
and hence only extract training data on a win. To conclude, try/catch statements were
implemented around all data extraction code and some test games were run. Data files
were being output into the correct location, and although the files appeared visually
convoluted, they contained all necessary information that could be used later.
Furthermore, this function could be easily modified to instead pass game state

information to the middleman as opposed to outputting a training file.

5.2.2 Farming Training Data

Collecting training data involved playing the game against the existing Footsies Al, and
eventually, two sets of training data were collected. The explanation for this segmentation

was that the existing Footsies Al was “bad.” The Al operated randomly, queueing

40

DEVELOPMENT UP2157533

different move sequences haphazardly, which meant although training data could be
collected without issue, many rounds ended abruptly with the Al instantly whiffing a
special move, only to be punished and lose. Training the model to punish mistakes as a
human would do was vital, however with the frequency of these mistakes, variety in the
data would suffer. To combat this, minor modifications were made to the existing Al
Any instance of executing a random special had its probability reduced by 50%. This led
to longer rounds that provided varied game states and was ultimately the Al used to
construct the second training dataset. In conclusion, approximately 1300 training data
files were gathered over approximately 15 hours. The quantity was low, however no more

could be gathered in the time allotted to farming training data.

5.3 The Middleman

Next was the middleman. This section covers the implementation of a WebSockets client
and server that would provide a means of communication between Footsies and the

network.

5.3.1 The Footsies Client

The client required a main method to establish the client, and two methods to send and
receive messages. The built in C# WebSockets API made implementing these simple,
however an issue arose. Initially, the first iteration of the send/receive methods used a
while loop to constantly monitor messages ready to send/ready to receive. This code is
seen below in Figure 5.2 and was ultimately scrapped. With this code, upon launching
the game and initialising the server, the thread on which the client was running would
block the game as the client repeatedly checked for messages to be sent and received.
This was due to not running the code asynchronously and instead hogging the main thread

preventing the game from running.

41

DEVELOPMENT UP2157533

while (client.State == WebSocketState.Open)
{
UnityEngine.Debug.Log("Dequeueing message...");
string message = BattleCore.messageQueue.Dequeue();

// the message is encoded into UTF8 before being sent

byte[] messageBytes = Encoding.UTF8.GetBytes(message);

await client.SendAsync(new ArraySegment<byte>(messageBytes),
WebSocketMessageType.Text,
true,
CancellationToken.None);

Figure 5.2: The blocking message handling method

To fix this, the code was made to run asynchronously, and to do so two new variables

were introduced (see Figure 5.3).

public static readonly ConcurrentQueue<string> messageQueue = new();
public static readonly SemaphoreSlim messageAvailable = new(0);

Figure 5.3: The asynchronous variables for handling the message queue

The “ConcurrentQueue<type>> class is built on the standard “Queue” abstract data type.
The core difference between the two is that “ConcurrentQueue<type>" is designed for
when a queue must be accessed from multiple threads, as it comes with built-in thread
safety and synchronisation. This allows for the game to access the queue and append
items to it, while the WebSocket client can simultaneously dequeue elements as it sends
them to the server. "SemaphoreSlim” is used similarly; the semaphore has a maximum
count of one and is released by the game once a message is ready to be sent, with the
client holding the semaphore only to send a message. With the use of these two variables,
the message exchange methods were split into two separate methods, one for receiving
and one for sending, and were able to run asynchronously with the game and in a non-
blocking manner. These methods were then both called by the main method which

initialised the client and began asynchronous running of the two methods.

42

DEVELOPMENT UP2157533

5.3.2 The Python Server

To implement the Python server, the “asyncio” and “websockets” packages were
installed, with them, a function for message handling and server initialisation were
created. The message handler function, shown in Figure 5.4, would wait asynchronously
for messages, and upon receiving one, could process the message before returning the

output.

message handler for connected clients
async def message_handler(websocket):

try:
this block is where message recieving and processing happens
async for message in websocket:
print(f"Received message: {message}")
await websocket.send(f"Server received: {message}")

exception handling
except Exception as e:
print(f"Error: {e}.\nConnection closed. Press enter to terminate
server.")
input()
control_server(0)

finally:
print("Connection closed. Press enter to terminate server.")
input()
control_server(0)

Figure 5.4: The Python server-side message handling

Asynchronous message handling was a requirement, as to avoid similar errors with the

Footsies client. The server is terminated upon any error or if the client shuts down.

5.3.3 Controlling the Client and Server

A method to initialise server/client and a method to update the message queue were
required, and they would be called by the director. Initialising the server/client was done
by calling the main method of the client and running the “serverpy” file using the C#

“Systems. Diagnostics” library. Figure 5.5 shows the “UpdateMessageQueue” method

43

DEVELOPMENT UP2157533

implemented in the “BattleCore.cs” file: which could be called in place of the training

data output function.

public void UpdateMessageQueue(string message)
{
messageQueue.Enqueue($"Sending message {message} at frame {cur-
rentFrameCount}");
messageAvailable.Release();

}

Figure 5.5: The director-called function for updating the message queue

5.4 Pre-processing

The penultimate component was the pre-processing pipeline, including the parsing and
normalising of data. This pipeline would be split into two files, one for parsing, and one

for normalising.

5.4.1 Parsing the Data
The development of the parsing module required three main components:

» A main function that can be called to parse all the data.
» A component that can parse the dataset and create a DataFrame.

» An auxiliary function that can extract data from a csv.

The first component to be completed was the data parser. Pulling the files from the
training data set was mostly trivial, and using the built in Python OS library, the current

directory was grabbed before attaching the path of the dataset to parse (see Figure 5.6).

dataset_name
dataset path
dataset_name)

r"TrainingData\DATASET#2-NEW_ATI"
os.path.join(os.path.dirname(os.path.dirname(__file_)),

Figure 5.6: Retrieving directory path using the built-in OS library

At this stage it was also decided every round would be stored in one large DataFrame,
with a column to identify different rounds. This was because Pandas DataFrame objects

are designed for large operations, and multiple objects would slow down the parsing.

44

DEVELOPMENT UP2157533

With the files pulled from the directory, next came parsing data from them. The Python
RegEx “search” function takes a pattern and data before returning all matches found in
the data inside a “match” object, which contained separate groups, the value of any
indexed group being the match found at that index. A “pattern” defines a specific string
to locate within the search argument, and a pattern could be easily defined with each line

of the training data (see Figure 5.7) having a consistent structure.

43:P1_INFO:currentInput(2)position(1.96,0.00)velocity x(@)...P2_INFO:current
Input(5)position(1.50,0.00)velocity x(2)...isDead(False)

Figure 5.7: An example line of training data

pattern = r"currentInput\((\d+)\)" + \
r"position\(([-\d.]+), 0.00\)" + \
r'velocity x\(([-\d.]+)\)" + \
r"isDead\ ((True|False)\)" + \
r"guardHealth\((\d+)\)" + \
r"currentActionID\((\d+)\)" + \
r"isAlwaysCancelable\((True|False)\)" + \
r"isInHitStun\((True|False)\)"

Figure 5.8: Search pattern for parsing

Each line within the pattern (see Figure 5.8) defines a different match. A brief outline of

each RegEx character used in the pattern above is displayed in Table 5.1.

45

DEVELOPMENT UP2157533

Table 5.1: Brief breakdown of utilised Python RegEx characters

Character Definition

/ Used to escape a character

() Used to identify a group

[] Everything within these can be matched
d A digit range [0, 9]

r Defines a string as raw

+ Must match one or more

- Negative symbol
Or

This pattern was used to identify the eight variables for each player, as well as a simpler
pattern to identify the respective frame number of the line. For a total of seventeen total
matches. These matches were returned to the parent method, which was responsible for
enumerating the dataset, calling the parse function for each line. The matches were
grouped into a list with the other lines of the file and returned to the parent method,
combining the enumeration counter with the list of parsed data. The final output would
be a single list composed of every frame of every file, parsed, and associated to a round.
This array could then easily be transformed into a Pandas DataFrame using NumPy and

saved using built-in Pandas methods (see Figure 5.9).

46

DEVELOPMENT UP2157533

def create dataframe(data):

converts the data from a python list to a numpy list
npData = np.asarray(data)

extractedData = pd.DataFrame(
data= npData,
columns=columnList)

extracts the data to a CSV for viewing
extractedData.to_csv(os.path.join(os.path.dirname(__file_),
"out.csv'))

Figure 5.9: Creating a DataFrame using extracted data and predefined column list

5.4.2 Normalising the Data

The normalising process was simple to implement. Using the procedures laid out in the
design section, the data, which could be read from the “csv” file created by the parser,
was operated on column by column until everything was normalised. The most
challenging implementation was the bitwise operations to convert “currentlnput”’ into
three distinct binary representations of buttons pressed. Two methods, shown in Figure

5.10, which were built into the NumPy library were used.

bitwise_and(arg_1, arg 2)

right _shift(arg 1, arg 2)

Figure 5.10: NumPy bitwise operations for bitwise mask decomposition

“bitwise_and” computes the bitwise AND of two arguments. Taking “arg I as the bit
we want to determine is pressed or not, “1” can be used in place of “arg 2, which would
return a result of one if the button is pressed and zero if unpressed. “right shif” takes an
integer for both arguments, “arg I represents the integer to be bit shifted, and “arg two”
is the number of bits to shift. Since the integer representing the buttons pressed had a
range of 0-7 inclusive, the variable could be operated on as three binary digits. As shown
in Table 5.2, the bit responsible for each button press was consistent, and using the two

methods outlined above, the exact state of each bit could be determined.

47

DEVELOPMENT UP2157533

Table 5.2: The bitmap for the current player input

C A R L
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

Calculating which bit represented which button was simple using the above table. The
first bit is responsible for the “L” button, the second for “R,” and the third for “A,”
representing left, right, and attack, respectively. It was important to not confuse the order
of the bits, as this could lead to the normalising of the data swapping all instances of a
left button pressed with an attack button, and vice versa. With this information and the
aforementioned bitwise operations, three new DataFrame columns were generated for
each button press, using the operations to label any pressed button with “1”, and

unpressed with “0”.

With the hardest of the normalisations out of the way, all other columns were normalised
with ease. The Pandas library provides methods for one-hot encoding and replacing
Boolean values with integers, and the minmax normalisation formula was employed
when necessary. A small albeit important method, “saveConfig()” method was also
constructed. During normalisation, maximum and minimum values for position and
velocity were taken from the data, and it was important these values remained consistent
during testing as to ensure the network operates on the same scale on which it was trained.
These values could all be saved within a Json file that could be accessed later (see Figure

5.11).

48

DEVELOPMENT UP2157533

config.update({
"P2maxPosition" :p2max_pos,
"P2minPosition":p2min_pos,
"PlmaxPosition":plmax_pos,
"P1lminPosition":plmin_pos,
"P2maxVelocity" :p2max_vel,
"P2minVelocity":p2min_vel,
"P1lmaxVelocity":plmax_vel,
"PlminVelocity":plmin_vel

1)

def saveConfig(config):

try:
open("networkConfig.json", "r")

except Exception:
open("networkConfig.json",

a+")

with open("networkConfig.json", "r+") as configFile:
json.dump(config, configFile)

Figure 5.11: Saving a Json config file with observed minimum and maximum values

Lastly, all pre-normalised columns were dropped, which was a necessary step as most

methods of normalisation did not drop the preexisting columns.

5.5 The Neural Network

With the data parsed and pre-processed and the middleman working, the next logical step

was to create the network.

5.5.1 Sequence Generation

The first step was developing a function that would sequence the data so it could be fed
into the network. As stated in the design section, a sequence length of twenty would work
as a starting point, however it was essential to keep this number malleable, as later testing
could find twenty to be too low/high. The proposed method would take a DataFrame
object, a desired sequence length, and a sequence step as arguments before generating as
many sequences as the data size permitted. The sequence step was left an argument to

allow flexibility in determining the overlap between the sequences, although the initial

49

DEVELOPMENT UP2157533

step used would be one. Rounds were grouped by ID: ensuring rounds remained discrete
prevented bleeding between sequences. Once grouped and sorted by frame, a loop could
iterate over the data and grab features and targets within the defined sequence size, adding
each to a list. The features were defined as any column that was not a target column,
meaning approximately forty-five columns would be used as features and three as targets:
the player one left, right, and attack button presses. The final method is shown below in

Figure 5.12.

the _ is for roundID, while not accessed, its here to make sure se-
quences

dont bleed into other rounds

for _, roundData in df.groupby("round_ID"):

this skips rounds that are too short, which is impossible rn, but
if i ever make seqlL larger then could be relevant
if len(roundData) < seqL:

continue

sorts the round by frame number
roundData = roundData.sort_values(by="frame_number")

loops the round data in range length round data to sequence length,
+ 1 to account for range exclusiveness

the step here is 1, this creates a sliding window

for i in range(9, len(roundData) - seqL + 1, step):

this grabs all the data apart from the targets, or only the

targets

.iloc simply grabs data at an index or index range, specifying
the column to grab from

sequence = roundData.iloc[i:i+seqlL].drop(columns=targetColumns)
target = roundData.iloc[i:i+seqlL][targetColumns]

this pulls the values from the iloc methods.
sequences.append(sequence.values)
targets.append(target.values)

Figure 5.12: The main body of the create sequences method

Before generation of sequences could begin however, training data needed to be split into

three sets, those being training data, validation data, and test data as stated in the design

50

DEVELOPMENT UP2157533

section. Splitting this data is done simply using the SciKit-Learn API, via the
“train_test_split” function (see Figure 5.13).

X_train_raw, X_temp, y_train_raw, y_temp = train_test_split(X, vy,
test size=0.3, random_state=17)

split the what was 30 percent remaining into 50/50
X_val _raw, X_test_raw, y_val_raw, y_test_raw = train_test_split(X_temp,
y temp, test size=0.5, random_state=17)

Figure 5.13: Splitting the data into training, validation, and testing sets

With the data split, sequences could be generated for each set, and used appropriately to

train, validate, and test the model later.

5.5.2 Model Creation

The TensorFlow Keras Functional API provides incredibly simplistic creation of neural
network models, and with the model architecture already designed, implementing it was

simple and is shown below in Figure 5.14.

sequential model, 1 input, 1 output, 2 hidden layers

LSTM layer with 64 units, dense with 32, and dense with 3
last dense layer is output layer w sigmoid function

model = Sequential()

model.add(Input(shape=inputShape))

model.add(LSTM(64, return_sequences=True))
model.add(Dense(32, activation='relu'))

model.add(Dense(3, activation="'sigmoid"'))

compiling model with adam, binary cross-entropy, and accuracy metric
model.compile(optimizer=Adam(),

loss="binary_crossentropy’,

metrics=["accuracy'])

return model

Figure 5.14: Creating the network model

Each hyperparameter specified in the previous design section could be adjusted easily,
which not only allowed for quick implementation but also allowed for straightforward

testing later. Once built, the model was compiled using Adam, binary cross-entropy, and

51

DEVELOPMENT UP2157533

accuracy metrics before being returned. This function would be called by a parent method

to create the model before training and saving it.

Note: A dropout layer with a value of 0.5 was appended to the model after the first LSTM
layer and before the first dense layer. The reasoning for this was that the model was
relatively complex, and out of fear of the model overfitting, a dropout layer was included

to help combat this.

5.5.3 Main Method

Within the main method, the creation of sequences and building of the model could be
called. It was here model checkpoints could be defined. Model checkpoints (as shown in
Figure 5.15) allow for the saving of a model at preferred training intervals. Here, the
validation loss is monitored, and for each epoch should a new minimum be achieved, the

model is saved and if necessary overwritten with the improved model.

inputShape = (X_train_seq.shape[1l], X train_seq.shape[2])

model = buildModel(inputShape=inputShape)

checkpoint = ModelCheckpoint("FootsiesNeuralNetwork.keras",
save_best only=True,
monitor="val_loss",
mode="min",
verbose=1)

Figure 5.15: Model checkpointing

With the model created and data processed, the only thing left was to train and evaluate
the model, and with that, the network was created. The immediate results of the network

however were disappointing and will be shown and discussed in Chapter 6.

5.6 Game Integration

The final component to be developed was a class that could host the model and handle
pre-processing, sequence generation, and predictions given live game state information

from the director.

52

DEVELOPMENT UP2157533

5.6.1 The Predictor Class

The first step was to define the class that would handle all game prediction, the creation

of which is shown in Figure 5.16.

class FootsiesPredictor():
def __init__ (self, modelPath, sequencelLength, features):
self.model = load_model(modelPath)
self.seqlL = sequencelength
self.features = features
self.buffer = []

Figure 5.16: The predictor class

With the class created as such, variable model paths, sequence lengths, and feature counts
could be passed into any new instance. This would ease later testing, as these values were
likely to be tinkered with. Note the instance buffer list; this would hold pre-processed

frames from the middleman until enough were stored to generate a single sequence.

5.6.2 Pre-Processing Live Inputs

A non-trivial issue arose during the next step of creating a method to pre-process live
data. The existing pre-processing and normalisation code only worked on full datasets,
as opposed to single lines. The cause of this was two reasons, firstly, the existing
normalisation code would only assign new values for minmax normalisation, as opposed
to reading the config. Secondly, the normalisation code would pull data from a csv, as
opposed to straight from the parsing code. This created a type mismatch which would
raise errors at every step of normalisation. The solution to this was the refactoring of the
pre-processing and normalisation files into a single class, “DataPreprocessor.” Within
it, the same parsing method was copied, and the normalisation method was split into three

99 ¢¢

methods; “normalise,” “normaliseLivelnput,” and “normaliseDataset.” This distinction
allowed for proper config reading/writing while also eliminating the need to copy the
DataFrame to a csv, passing it directly from the parser to the normaliser, ensuring the
normaliser would always work with data passed from the parser. Now, live data passed
from the middleman could be pre-processed without issue before being added to the
buffer. This buffer would act as an instance of the sequences generated during training.

Since the network was trained on fixed length sequences, it could only predict an output

53

DEVELOPMENT UP2157533

if it were given the same length sequence. Should the buffer be larger than the sequence

length, the oldest frame could be popped, maintaining the correct sequence length.

5.6.3 Predictions

Once the buffer was full the prediction could be called. The prediction method was trivial
to implement. A simple check was used to ensure that the buffer was of correct size, and
if the check returned true, the buffer was reshaped into an input of size (1,
sequencelLength, featureCount). This was then fed into the model which would return a
list of three floats, each float equal to the predicted probability a button would be pressed.
Converting this list of floats into an input integer for the game was done by first
converting the floats into binary integers using a threshold, 0.5 in this instance. The list
of now binary integers was reversed and transformed into a string. The reversing of the
list was incredibly important. During training, the network was fed target outputs in the
order “Left, Right, Attack,” and as covered earlier during the normalisation process, it
was determined that these three outputs were equal to the first, second, and third bits,
respectively. Because of this, to ensure the correct binary integer was created, the list was
reversed to ensure that the bit order accurately matched the button order. The final

conversion process is shown below in Figure 5.17.

54

DEVELOPMENT UP2157533

rearrange buffer
currentSequence = np.array(self.buffer, dtype=np.float32).reshape(
(1, self.seqlL, self.features))

create prediction with model
prediction = self.model(currentSequence)[9, -1]

threshold = 0.5 # input threshold

converts list of floats into binary, then into int
binOutput = [

1 if value >= threshold else © for value in predic-
tion.numpy().tolist()]
binString = ''.join(str(bit) for bit in binOutput[::-1])
finalOutput = int(binString, 2)

Figure 5.17: The prediction conversion into an integer that could be used as an input

Once the string binary integer was created, it was as simple as converting this string into
a binary type, then back into an integer, leaving the final result as the current input

predicted by the network.

The final thing of note: currently, the predictor was set to predict only every fourth frame.
This was due to prediction time averaging approximately 20ms. Since Footsies runs at
60fps, each frame allows 16ms of leeway to complete operations, and so predicting every
frame caused the network to fall behind, however, this frequency could be tinkered with

during testing.
5.6.4 The Director and The Middleman

The last step was to tie this network class into the middleman and director. Within the
middleman’s message handler, a created instance of the “FootsiesPredictor” could be

used to prepare live data and return predictions (see Figure 5.18).

55

DEVELOPMENT UP2157533

async for message in websocket:

start = time.perf_counter()
footsiesAI.prepareData(message)
print(f"PrepareData: {(time.perf_counter() - start)*1000:.2f}ms")

start = time.perf_counter()
output = footsiesAI.predict()
print(f"Predict: {(time.perf counter() - start)*1000:.2f}ms")

await websocket.send(str(output))

Figure 5.18: Message/Prediction handling via the middleman Python server

Lastly, a new variable in “BattleCore.cs” was created that held the current input of the
network, which the Footsies WebSocket client could easily update upon receiving a

message from the Python server and director could use to modify the player one input.

56

DEVELOPMENT

UP2157533

With game integration complete, a flowchart was created to show director, middleman,

and network components, and is seen below in Figure 5.19.

networkinput
BattleCore.cs

OutputTrainingData() - UpdateMessageQueue()
BattlaCore 5 Footsies Game [BattieCore.cs

Training Data

FootsiesClient()
WebsocketServer cs

preProcessing.py

InitialiseNetworkControk() SendMessagesAsync()
GameManager.cs WebsocketServer.cs

control_server() messageHandler()
serverpy serverpy

FoolsiesNeuralNetwork keras

Footsies

prepareData()
The Director (In-Game) FootsiesFredictor()

The Director (Data Collection) FaotsiesPredictor()

gameAl.py

The Middleman

predict()

The Neural Network FootsiesFredictor()

ReceiveMessagesAsync()
WebsocketServer.cs

Figure 5.19: The final structure of the director, middleman, and network

5.7 GitHub Release

While the official GitHub release would have to wait until the completion of the testing

section, the release process was studied to ensure a smooth launch when the time came.

Simply building the game via the Unity editor would create a directory with all necessary

files, bar the Python code, which was simply moved manually post build. The build was

tested on multiple devices, with only a few bugs relating mainly to directory paths and

performance issues. Fixes for these were simple, simply refactoring the code to ensure

57

DEVELOPMENT UP2157533

all directories are grabbed relative to the running file, and regarding performance;
TensorFlow can be CPU intensive, and the fix for this was to introduce a sliding window
for prediction intervals, that calculated the average time of the last three predictions and

set the intervals to match that.

5.8 Summary

The project at this stage was “complete.” Meaning every component was functional and
operational. The game could be played by the network without issue, which left only
testing and improving of the model to be completed, which would be a necessity

considering the disappointing initial performance of the network.

58

Chapter 6

Testing

6.1 Introduction

With the current efficacy of the model, rigorous testing to ensure the quality of the model
could be improved was necessary to achieve the must have requirements of the artefact.
Three distinct elements of the project could be iterated on, those being the
hyperparameters of the network, the features used to train the network, and the structure
of the parsed data. This chapter covers the experiments taken on the aforementioned three

elements with the primary aim of improving the efficacy of the model.

TESTING UP2157533

6.2 Initial Model Results

It was important to establish a baseline to allow for comparisons during the testing
process. After training the model on the data, the final accuracy and loss of the model
could be observed, as well as the training loss and validation loss during the training

process.

Training and Validation Loss

0.24 +
—— Train Loss
val Loss

0.23

0.22 +

Loss

0.21

0.20 4

0.19

Epoch

Figure 6.1: A graph showing training and validation loss per epoch

As shown in Figure 6.1, training loss was decreasing while validation loss was slowly
but steadily increasing. This was a symptom of the model overfitting, i.e. it was
memorising the training data as opposed to learning to generalise. It is also important to
note that this model was only trained for five epochs. This was due to use of an “early
stopping” callback during model training; a simple callback that halts training of the
network should the value of a specified variable (e.g. validation loss) not improve within

a set number of epochs.

60

TESTING UP2157533

The accuracy and loss of the model is shown below in Table 6.1.

Table 6.1: The accuracy and loss of the first model

Metric Value
Loss 0.2028
Accuracy 0.6559

6.3 Validation Metrics and Loss Functions

Currently, binary cross entropy was being used to determine the loss, and the validation
loss of the model was being monitored to rank the model. However, these methods can
perform poorly on imbalanced datasets (datasets were the ratio of ones to zeroes is large)
and using the normalised dataset to find a ratio of negative samples to positive samples,

the imbalance could be observed, as seen in Table 6.2.

Table 6.2: The observed imbalance of negative to positive samples

Button Ratio of negative/positive samples
Left 2.92
Right 2.16
Attack 5.53

With this imbalance, it becomes clear that a weighted cross entropy function would be

required to train the model, as well as some form of weighted metric for model ranking.

6.3.1 Weighted Binary Cross Entropy

Rezaei-Dastjerdehei et al. (2020) showed that weighted binary cross-entropy was able to
increase recall by approximately 10%, while precision does not decrease more than 3%
relative to regular binary cross-entropy. The TensorFlow library does not provide a built

in weighted cross entropy loss function, however implementation of this was trivial, and

61

TESTING UP2157533

is shown in Figure 6.2. Class weights would have to be passed to the function, however
defining these were as simple as calculating the ratio of zeroes to ones within the target

classes.

def weightedBinaryCrossentropy(classWeights):

returns a custom loss function with class specific weights.

classWeights = tf.constant(classWeights, dtype=tf.float32)

def loss_fn(y_true, y_pred):
clip predictions to avoid log(®@)
y_pred = tf.clip_by value(y_pred, le-7, 1 - le-7)

apply the binary cross entropy formula with the weights
bce = -(classWeights * y_true * tf.math.log(y_pred) +
(1 - y _true) * tf.math.log(1l - y pred))

return tf.reduce_mean(bce) # average over batch and classes

return loss fn

Figure 6.2: The weighted binary cross-entropy function

The formula for the weighted binary cross-entropy was applied and is shown below in

3).

Loss = —[w-y-log(y")+(1—-y) log(1—y")] 3

The weighted binary cross-entropy function would be applied during model training from

now on as a better representation of the true loss of the model.

6.3.2 F Score and Leniency

The “F Score” of a model is used to monitor the efficacy of a model and is defined as the
harmonic mean of precision and recall (Taha & Hanbury, 2015). It is calculated as a

function of the precision (4) and recall (5) of a model, and the formula is seen in (6).

62

TESTING UP2157533

recision = L @)
p ~ TP+ FP
TP 5)
recall = TP+—F1V
— 5 precision -recall 2TP 6)

precision + recall 2TP + FP + FN

TP and FP represent true and false positives respectively, with FP and FN representing
false positives and false negatives. Using F Score as a ranking metric would be a better
representation of the efficacy of a model, as F Score accounts for the distribution of
samples and class imbalance by including false positives and false negatives in its

formula.

This could be implemented in a similar fashion to the custom loss function. While F
Score is not supported by the TensorFlow API, a custom metric can be defined by

inheriting the “fensorflow.keras.metrics.Metric” class.

63

TESTING UP2157533

@keras.saving.register_keras_serializable()
class F1Score(Metric):
def __init_ (self, num_classes=3, name='strict_f1 score', **kwargs):
super().__init__ (name=name, **kwargs)
self.num_classes = num_classes

self.tp = self.add_weight(name="tp', initializer='zeros')
self.fp = self.add_weight(name="fp', initializer='zeros"')
self.fn = self.add weight(name='fn', initializer='zeros')

Figure 6.3: Implementation of the F Score metric

With the updated ranking metric and loss function, a new model was trained to serve as

the baseline, and the results of which are shown in Figure 6.4 and Table 6.3.

Training and Validation Loss

0.50 -
—— Train Loss

Val Loss
0.48 A

0.46 -

0.44

Loss

0.42 -

0.40 -

0.38 A

0 2 4 6 8
Epoch

Figure 6.4: The training/validation loss per epoch with the new loss function

64

TESTING UP2157533

Table 6.3: The accuracy, loss, and F Score of the new model

Metric Value

Loss 0.4460
Accuracy 0.6932
F Score 0.7740

The validation loss curve showed a sharper increase in validation loss this time around,
meaning the model was still overfitting. Ultimately, the network trained with pseudo-
random initialised weights, so minor differences would be present, such as the large spike
and dip in validation loss. However, this would not affect the overall efficacy of the
model: a good model will have a low validation loss regardless of the random initialised
weights. Not too much could be deduced from the loss per epoch, as for example the
increase in loss relative to the previous model could be explained by the new loss

function.

It was important to note however that the accuracy was slightly higher, increasing by
approximately 5%. This increase was determined to be insubstantial, with the predicted

cause being the random adjustments of the initial weights.

With a new baseline established and values for loss, accuracy, and F Score determined,
any improvements to the model could be compared with this baseline to evaluate any

adjustments made.

6.4 Hyperparameter Tuning

Ultimately, the best way to tune the hyperparameters was to brute force test all
permutations of parameters and evaluate the resulting models. Six hyperparameters were
chosen to be experimented on, and a Python script was written to create Json
configuration files that stored all values of that permutation/experiment. The
hyperparameters that would be modified are laid out below with their respective list of

permutations in Table 6.4.

65

TESTING UP2157533

Table 6.4: The hyperparameters that would be experimented with

Hyperparameter List of Values
LSTM Layer Size 32, 64

Dense Layer Size 16, 32
Dropout Rate 0.1,0.3,0.5
Batch Size 32,64
Sequence Length 10, 20, 50
Sequence Step 1,2

The justification for these values was simple: the model was overfitting, effectively
meaning it was too complex, and these changes aimed to mostly reduce complexity,

forcing the model to learn to generalise.

The existing code to create a model was simply duplicated and refactored to iterate
through the list of generated configurations and create a new model with the desired
hyperparameters. Sequences were only regenerated in instances where the sequence
length or step differed. While the regeneration of sequences will cause some natural
deviation in the results, these deviations will be inconsequential to the efficacy of a given

model.

With this testing framework established, once the feature engineering (laid out in the next
chapter, Chapter 6.5) had been complete, tests could be run to determine the optimal

hyperparameter configuration.

6.5 Feature Engineering

At present, the current features in the dataset may not be optimal for teaching the network
recurring patterns in the data, and features needed to be either tweaked or new features
be derived from others. Using the author of this project’s domain knowledge, a list of

features was generated which encompass elements a human could observe and derive

66

TESTING UP2157533

upon looking at the game state. Since the network’s goal was to emulate human play, it
was important to ensure all features could be reasonably interpreted by a human, to
ensure the model had no innate computer-aided advantages. The list of features was the

following:

» Relative distance between fighters.

In enemy threat range.

Is cornered.

Enemy is in range and in a punishable state.

Enemy is guarding.

YV V. .V V V

Frame advantage.

This list was not comprehensive, and unfortunately due to time constraints (which will
be discussed further in Chapters 7 and 8) optimising this list further could not be

accomplished.

Generating these features was mostly trivial. Using the established middleman system,
position values were pulled from the game to define features such as whether a fighter
was in threat range (calculated by comparing the fighters’ positions to their attack ranges,
shown in Figure 6.4) or whether a fighter was close to the edge of the screen (a Boolean
value that would flag true when a fighter was in the bottom percentile of the screen
space). Using the existing pre-processing code, these new features were derived and used

to normalise a new dataset, which could be used for experimentation.

67

TESTING

UP2157533

df["P1_n_attack_punish"] = (
(df["distance"] »>= 2.34) &
(df["distance"] <= 3.18) &
(df["P2_currentActionID"] == 105)

).astype(int) | (
(df["distance"] >= 2.54) &
(df["distance"] <= 3.38) &
(df["P2_currentActionID"] == 100)

).astype(int)

df["P1_b_attack punish"] = (
(df["distance"] >= 2.34) &
(df["distance"] <= 3.0) &
(df["P2_currentActionID"] == 105)

).astype(int) | (
(df["distance"] >= 2.54) &
(df["distance"] <= 3.20) &
(df["P2_currentActionID"] == 100)

).astype(int)

Figure 6.4: Calculating whether a fighter is punishable via attack ranges

With the features derived, the next step was determining whether or not they were

relevant to the network. Currently, the network was overfitting, meaning that the model

was likely too complex, so as opposed to adding these features outright experiments

would be performed comparing the existing features to the new features to determine the

relevancy of the new derived features.

To determine the relevancy of features derived and pre-existing, a function was created.

The function would evaluate the importance of different permutations of the model by

taking a trained model, iterating upon each feature, and shuffling the values, before then

evaluating the model’s F Score delta with the shuffled feature. By making each feature

essentially redundant and then evaluating the model, a better understanding of the

relevancy of each feature could be observed.

68

TESTING UP2157533

So, with the new features existing in the dataset, a model was trained, and the features
were evaluated for their importance. The updated model’s validation loss can be seen

below in Figure 6.5.

Training and Validation Loss

—— Train Loss

0.48 1 Val Loss

0.46

0.44 -

Loss

0.42 1

0.40

0.38 -

0 1 2 3 4 5 6 7
Epoch

Figure 6.5: The validation/training loss of the model with the new features

As shown, the model was still overfitting. This was expected behaviour, as simply adding
more features would only encourage the model to specialise and result in a hindered

ability to generalise patterns. Below in Figure 6.6 is the importance of each feature.

69

TESTING UP2157533

Feature Importance (Permutation)

Figure 6.6: A bar chart showing the effect on F Score of each feature

The results of this were very surprising. It showed that the movement of the player one
character had a disproportionate effect on the final prediction. This was likely due to the
movement columns being the most diverse, as the player character moves more than
anything during a round. What was also surprising was the almost completely redundant
player two features: the model was disproportionately weighting the importance of the
player one data more than the player two data. This was induced to likely be the result of

the network only needing to predict what player one was doing at any given time.

All observations made were then used to modify the data set, and the following changes

were made to all features:

» Removal of unimportant/unsubstantial columns (where delta F Score was less
than 0.01).
» Combining of partly synonymous columns for both players (e.g. columns

responsible for blocking/attacking).

Figure 6.7 shows the new F Score deltas for each column.

70

TESTING UP2157533

Feature Importance [Permutation}

Figure 6.7: Updated permutation importance after feature engineering

The chart clearly shows a better spread of feature importance, however the columns
responsible for player one’s forward (left) movement were still incredibly
overrepresented. The solution to this would likely be modifying the dataset to include
more instances where the player was not moving/performing other actions. However due
to the time constraints of this project, there was simply no time to optimise the dataset in

this manner, and again, this will be discussed in detail in Chapters 7 and 8.

Ultimately, it was this configuration of features that would be used in training the final

model.

6.6 Choosing the Final Model

The last step before evaluating the final model, was to select a final model. Chapter 6.4
describes the testing framework that would be used for this, and with the dataset
optimised as well as time would permit, experiments were run to determine the best
network architecture to use as the final model. The testing framework was run, and all

144 configurations were implemented and tested over approximately 5 hours. In

71

TESTING UP2157533

conclusion, the model with the highest F Score on the validation data was experiment

106, the configuration of which is shown below in Figure 6.8.

{

"experiment_name": "exp_106",

"model": {
"LSTM_unit_size": 32,
"dense_unit_size": 16,
"dropout_rate": 0.3

s

"training": {
"batch_size": 64,
"sequence_length": 30,
"step": 1

}

}

Figure 6.8: Configuration file of experiment 106

Now while experiments 103 and 141 had the highest validation accuracy and lowest
validation loss respectively, these metrics can be misleading for a model trained on
imbalanced dataset. A model can achieve high accuracy in, for example, a multi-

classification task where most targets present “0” by simply always predicting zero.

With the best configuration decided, the final model was trained, and the results are
shown below in Table 6.5. This final model was then bundled into the project before

being published as a GitHub release, shown in Figure 6.9.

Table 6.5: The accuracy, loss, and F Score of the new model

Metric Value

Loss 0.4334
Accuracy 0.6628
F Score 0.7778

72

TESTING UP2157533

FOOTSIES: Neural Network Edition v1.0.0

The first release of the project.

There are some performance issues, and the network is rudimentary, but here is the first release!

v Assets

(%]

Figure 6.9: The final GitHub release of the project.

6.7 Final Model Ability

With the project released and the artefact effectively “complete,” a simulation was run to
evaluate the abilities of the model. One hundred rounds were played pitting the model

against the existing CPU, and the results of which are shown below in Table 6.6.

Table 6.6: Results of one hundred games played between the model and existing CPU

Fighter Victories
Al Model 11
Existing CPU &9

The Al model was unsuccessful in achieving a strong win-rate against the existing CPU,
reaching only a rate of 11%. Furthermore, while there was no specific metric to evaluate
a model’s ability to emulate human playstyle, observing the model made it clear that the
strategies it employed were not only incredibly rudimentary but also, evaluated with the
project author’s domain knowledge, distinctly robotic. Evaluation of this model against
the specifications would be discussed in Chapters 7 and 8, although it was clear that the

model proved an unsuccessful solution to the project problem.

73

TESTING UP2157533

6.8 Summary

In summary, the testing of the model was largely unsuccessful in creating a meaningful
increase in model efficacy. Specifically, dataset manipulation and feature engineering
were unsuspectingly large tasks and should have had more time dedicated to them.
Management of the established time constraints and their effect on the final efficacy of

the model will be discussed further in Chapters 7 & 8.

74

Chapter 7

Evaluation

7.1 Introduction

This section is dedicated to the evaluation of the final artefact, both in its value as a
solution to the established project problem, and its success in meeting the specification

requirements.

7.2 Evaluation Against Requirements

Each requirement was deemed “met” should this report outline sufficient evidence of
meeting said requirement. Table 7.1 below shows an evaluation of each must have (MH),

should have (SH), and could have (CH) requirement and whether or not they were met.

Table 7.1: An evaluation of each requirement and whether they were met or not

Requirement Status Evidence
MH1 Met 5.7,6.6
MH?2 Met 5.6

MH3 Not Met N/A

SH1 Not Met N/A
CH1 Not Met N/A
CH2 Not Met N/A

WHI1 Not Met N/A

EVALUATION UP2157533

Requirements MH3 and SH1 both pertain to the in-game ability of the model, being able
to play like a human and play in a skilful manner, respectively. As discussed in Chapter
6.7, the model was both weak in comparison to the existing CPU, and distinctly robotic
(despite the absence of a discrete measurement of human ability emulation). The cause
of this being an insubstantial amount of time dedicated to manipulating the dataset to
allow the neural network to better observe patterns and generalise. While
hyperparameters and features were iterated on and optimised, it was hypothesised that
the dataset produced was too limited and too unintelligible for the neural network to learn
via. This mismanagement of time ultimately comes from the project author’s lack of pre-
existing knowledge within the machine learning field, hence a severe underestimation of

the importance of “good” data.

Due to the time constraints and testing crunch that arose in the final weeks leading up to
the project deadline, there was too little time to implement both of the “Could Have”

requirements.

7.3 Evaluation Against the Project Problem

The aim of this project was to create an alternative method of play to the existing solution
of CPU opponents in fighting games for those suffering from “Ladder Anxiety.” With the
in-game ability and mannerisms of the final model as discussed in Chapter 6.7, it is clear

that this solution does not succeed in solving the project problem.

7.4 Evaluation of the Agile PMM

Any time management issues did not arise from the Agile PMM, conversely, this project
management methodology allowed for adaptation and manipulation of deadlines to solve
the time management issues that arose during this project. Specifically, the method of
keeping weekly logs and constantly reevaluating where the artefact stood in its
completion ensured that despite facing issues with deadlines, they could always be

adapted to and mitigated as much as possible.

76

EVALUATION UP2157533

7.5 Critiques

While the primary and inarguably most important critique of the artefact is its inability
to solve the discussed project problem, another relatively minor critique is the
performance of the model from a technical standpoint. TensorFlow model predictions
require vastly different calculation times depending on physical hardware, and with most
time being spent attempting to improve the model, optimising the model for lower-end

devices could not be done.

Another critique is the literature review section of this project being potentially subpar
(i.e. being short and not comprehensive in its evaluations). The justification for this is the
incredibly niche field this artefact aimed to operate within; implementing neural
networks in fighting games is a topic seldom covered in academic research, and with
such scarce discussion, it proved a challenge to find sources that were current, critical,
and relevant. Some sources which were both relevant and critical were used despite
potentially being considered outdated, however these sources mainly address well-
established ideas and concepts that remain relevant and unchanged within the machine

learning field.

77

Chapter 8

Conclusion

8.1 Conclusions

8.2 Project Aim

As discussed in Chapter 7.3, this artefact was unable to provide a solution to the existing
project problem therefore deeming the primary project aim unaccomplished. The
reasoning for this was simply the project author’s lack of domain knowledge which
materialised itself in not understanding/prioritising collection of data high in quantity and
quality, as well as likely too much time spent studying neural network implementation
methods, which ultimately proved much simpler than predicted using the TensorFlow

library.

8.3 Future Considerations

Despite this artefact’s shortcomings, all future considerations revolve entirely around
improving the efficacy of the model. The best way to accomplish this is more data, and
better data management. Collecting much larger amounts of data (e.g. 10’000 rounds
compared to this project’s 1°300) would likely lead to a huge improvement of the model,
let alone the optimisations to be made within cleaning the data itself. Furthermore,
implementing the model in a more efficient way, one that does not depend heavily on the
end-user’s hardware, could open the door to commercial applications where models can
be implemented into existing games with the purpose of providing a real solution to the

project problem on a larger scale.

EVALUATION UP2157533

8.4 Final Reflection

To conclude this project, I can confidently say that despite being extremely disappointed
in the abilities of the final artefact, I am incredibly satisfied with the knowledge and
experienced gained along my journey. This dissertation gave me a chance to study
machine learning and neural networks, learn about the project development and
management process, and also give me an opportunity to write academically again, a task
I had missed dearly. Being able to evaluate research within the field also opened my eyes
to the seemingly limitless potential of neural networks and helped further sharpen my
analytical and critical thinking skills. I am incredibly happy and grateful for the
opportunity to create an engineering project such as this, and I can definitively say I will

be returning to this project in the near future.

79

Appendix A: Ethics Form

UNIVERSITYor
PORTSMOUTH

Certificate of Ethics Review

Project title: Using Machine Leamning to Develop a Lifelike Al fo Play Against in the Fighting Video Game
“Footsies™

Name: | Baha Alfararjeh UserlD: | 2157533 | Application date: | 06/12/2024 | ER Number: | TETHIC-2024-110036
15:07:11

ou must download your referral certificate, print a copy and keep it as a record of this review.
The FEC representative(s) for the School of Computing is/are Elisavet Andrikepoulou, Kirsten Smith

It is your responsibility to follow the University Code of Practice on Ethical Standards and any Department/School
or professional guidelines in the conduct of your study including relevant guidelines regarding health and safety
of researchers including the following:

. . ity Poll

.) .

It is alzo your responsibility to follow University guidance on Data Proteciion Policy:
. ; o
.])) .

Which school/department do you belong to?: School of Computing

What is your primary role at the University?: Undergraduate Student

What is the name of the member of staff who is responsible for supervising your project?: Carrie Toptan

I the study likely to involve human subjects (observation) or participants?: No

Will financial inducements (other than reasonable expenses and compensation for time) be offered to
participants?: No

Are there risks of significant damage to physical and/or ecological envirenmental features?: No

Are there risks of significant damage to features of historical or cultural heritage (e.g. impacts of study
technigues, taking of samples)?: No

Does the project involve animals in any way?: No

Could the research outputs potentially be harmful to third parties?: No

Could your research/artefact be adapted and be misused?: No

Will your project or project deliverables be relevant to defence, the military, police or other security organisations
and/or in addition, could it be used by others to threaten UK security?: No

Please read and confirm that you agree with the following statements: | confirm that | have considered the
implications for data collection and use, taking into consideration legal requirements (UK GDPR, Data Protection
Act 2018 etc.), | confirm that | have considered the impact of this work and and taken any reasonable action to
mitigate potential misuse of the project outputs, | confirm that | will act ethically and honestly throughout this
project

Supervisor Review
As supervisor, | will ensure that this worlk will be conducted in an ethical manner in line with the University Ethics Policy.
Supervisor comments:

Supervisor's Digital Signature: carrie.toptan@port.ac.uk Date: 10/12/2024

Appendix B

Gantt Chart

Coryts a1 L B, P S, e
Comeren e

e
[———.
Preject Davalopment

Campletian

Initistion
e
Verhy M e
‘Stugy & Planning
[—— p—
sy Sy v new o
Coryint Sty 8 s .
Compate oot of L e, Frc Som, i —
Gotnenes ot e
et Bt e s
[om—— o =
Ereject Devalopment
o 0 Cet reneesany oy
% s
Drcurmrinios ies w2
Completion
e —
intiation
[P p— e —
Stusdy & Planning
ety sy s -
I —
Dosmeran iews e e S
Project Development
T — s
FamFrabbgiOaa e
b et =
rem—— s
Gempietion
[oS— oo
Inition
Corpn 0. .
[p— -
owrn s
‘Stuey & Pranning
Coryin D Fom
sy Sty ol
o sty 8 mamen

Appendix C: Project Initiation

Document

Project Title: Using Machinz Learning 1o Develop a Lifelike Al to Play Against in the Fighting Vidso Game
“Footsies™

Student Name: Baha Alfararjeh (Preferred Mame: A1)

Student Course: BSC (HONS} COMPUTER SCIEMCE

Project Code: PIE4D

Supervisor Name: Carrie Toptan

Date: 11/10/2024

Declarations:
| {Baha Alfararjeh) give permission for this document to be made available to other students as examples of

previous work.

| {Baha Alfararjeh) confirm that | have read and understood the University Rules in respect of plagiarism and
student misconduct.

| {Baha Alfararjeh) declare that this work is entirely my own. Each quotation or centribution cited from other
work is fully referenced.

1) Client/Target Audience

My project is centred around creating an authentic artificial cpponent for people to play against. The targst
audience here would be video game players, specifically, my project is aiming to solve the problem of “ladder
anxiety™ that competitive "Fighting Game" genre video game players may feel. This anxisty stems from the fear
of facing and potentially being judged by other real plavers, or the loss of rating within the game's ELO system,
therefore my target audience is players who face this anxiety. These people may have nothing in common bar
the fact they face this anxiety, and so no special considerations need to be made towards a specific
demographic of pecple.

1) Degree Suitability

As a Computer Science student, this project is suited to my course. My project will involve putting neural
networks and machine learning in practice, which are not only important concepts within the Larger field of
technology, but also specifically fields that | will cover in my modules. To be exact, my modules do not go in
depth into these fields, and so by involving them into my project, | allow myself to explore these topic deeply,
while further building upon my course and degres.

APPENDIX C: PROJECT INITIATION DOCUMENT UP2157533

1) The Project Environment and Problem to be Solved

“Ladder anxiety”, while not having a formal definition, is accepted as the tendency to view competitien invideo
games as threatening, or intimidating, and in turn causing a response of anxiety. “Ladder” here referring to a
commonly used systemn within video games that assigns an ELO to each player, that increases whean winning
and decreases when losing (Zoet, 2017). This anxiety while conguerable for some, still leads to increased heart
rate, anxiousness, and increased levels of sSEMG activation which triggers increased masseter muscle
activation, which can lead to future cervical posture problems (Bueyes-Roiz, et al 2023). Competition in
individual sports athletes results in higher levels of anxiety/depressicn than team sports athletes (Pluhar, 2019)
which is why this problem becomes evident in the gaming sphere in regard to the genre of “Fighting Games”

“Fighting games" as a genre are known for their competitive matches, specifically between two opponents, that
can either be presented in a realistic or fantasy manner (Hosch, 2024). This individuality when playing means
players have no team to fall back on, and ultimately their cpponent will have no one to judge bar them. Fighting
games have Al controlled opponents who usually operate with inhumane reaction times or reading inputs (Liu,
2017}, and more complex Al that can surpass human-level performance have yet to be developed and
implemented in mainstream fighting games (Oh, 2022). These Al can feel noticeably inhumane which can be
simply unfun for players to compete against,

My project aims 1o sclve the problem of "ladder anxiety™ by implementing a new solution and hopefully
developing a software that can grow to improve existing solutions. My target audience here becemes people
who suffer from this “Ladder Anxiety". There needs to be no other defining feature about them, their
background, status, who they are or what their profession may be need not apply. This anxiety is common, ina
study of 12 cyberathletes most experienced symptoms of somatic anxiety (Whalen, 2013), which reinforces the
idea that this anxiety becomes more prevalent the stronger the competition, and in turn how invested the
player is. This anxiety could cause players from any level to struggle enjoving the genre, which is the key reason
finding and implementing a sclution is impertant. Solving this problem not only allows the pecple who suffer
from this anxiety to enjoy their passion again, but also opens doors for people who may be hesitant to engags in
this genre of games due to their pre-existing anxisty.

Zost, L M. [2017). Competitive State Anxiety in Online Compstitive Gaming: "Ladder Anxiaty”. Midwesterm State
University, Wichita Falls, Texas. https://msutexss.contentdm.oclo.orgfdigital/collection/thesis coll/id1257/

Bueyas-Raoiz ¥, Quinones-Uriostegui |, Valencia E, Leon-de Alba F, Quijano Y, Anaya-Campos
LE et al. Vidsogames compstition as an sty trigger and their implications on the masseter muscle
activation. Invest Discapacidad. 2023, 9 (2): 47-55. httpsiids.doi.orgM10.35366111118

Pluhar E, McCracken C, Griffith KL, Chrstino MA, Sugimoto D, Meshan WP 2rd. Team Sport Athlstes May Be Less Likely Jo
Suffer Ansisety or Depression than Individual Sport Athlstas. | Sports Sci Med. 2013 Aug 1;18(3):450-496. PMID: 31427871;
PMCID: PMCEEE3619.

Hosch, W. L. {2024, August 30}, electronic fighting game. Encyclopaedia Britannica.
https e britannice.comftopic/electronic-fighting-gamsa

Liu, R. {2017 Dec). Creating Human-like Fighting Game Al through Flanning. Carnegie Mellon University Pittsburgh, PA.
https:/fwewawi i.cmu.edu/publications/ereating-human-like-fighting-game-ai-through-planning/

|. Oh, 5. Rho, 5. Moon, 3. 3on, H. Lee and |. Chung, "Creating Pro-Leval Al for a Real-Time Fighting Game Using Deep
Reinforcement Leaming,” in [EEE Tranzsctions on Games, vol. 14, no. 2, pp. 212-220, June 2022, doi:
10.1108/TG. 2021 . 3045539

Whalen, Samuel loseph. Cybearathistes’ Lived Experisnce of VWidso Game Tournaments. PhD diss., University of
Tennessea, 2013,
https:/ftrace tennessee.adufutk_graddiss/ 1794

&3

APPENDIX C: PROJECT INITIATION DOCUMENT UP2157533

V) The Project Aim and Objectives

Aim:
To create an Artificial Intelligence Oppenent, or "CPU" colloquially, using machine learning and neural
networks that can emulate a real player for the Fighting Genre Video Game "Footsies”, developed by "HiFight™

Objectives:

- Tocreate an Al that can be installed and run on any device owning the game “Footsies.”

- To publish videos documenting my progress at a steady rate that can both be watched by my
supervisor to attain a standing ocn my progress as well as be published online for viewers towatch
and react to on my YouTube channel.

- Embody my project management methodology to ensure | develop software at a steady rate and
focus more on the existence of working software than the rigorous following of plans.

V) Project Constraints

Time

While time is a factor all final project applicants must face, in my specific case time can be damning as
not only must | create the training data for my Al, but | also must train the Al, both of which take a long and moreg
importantly indeterminate amount of time:

Scheduling Conflicts

Currently, | work a part time job in the early hours of the weekends. As well as this, the seldom
weekends | am notworking | use to visit my family. While visiting my family | do not have access to my deskiop,
which means | cannot make progress on my work. As well asweekends, the few weeks off throughout the year
will mostly be spent at home with my family, meaning more time away from my project.

Vi) Facilities and Resources

- My Desktop

- MyLaptop (while less powerful than my desktop, fully capable of report writing)

- Wisual Studic Code, GitHub Desktop

- University Library (especially important throughout the process of learning about machine learning)

- University Laptops (in case of emergency)

- YouTube |provides an endless stream of not only informative study content, but also similar
applications of machine learning which | can learn from)

- My Lecturers (| have plenty of lecturers who are not only willing and happy to support me, but also
enjoy the concepts and fields my project will revolve around)
"Footsies” by HiFight source code (available on GitHub, for the 1.0 versicn of the game)

84

progress take too
long to produce
and ars hindering
me

APPENDIX C: PROJECT INITIATION DOCUMENT UP2157533
Vil} Log of Risks
Risk Description Likelihood Impact Mitigation

Hard Drive Failure Failure of one offall | Low High Purchase a new
of the hard drives storage medium to
storing training data hold training data

and using cloud
backups

Deskiop/Laptop PC failure —unable | Low Low Use University

Failure towork on one Provided PCs to
offall of my PCs for complete my work
an indeterminate
amount of time

Project Schadule Certain aspects of Medium Medium Reorganise my

Risk my project take priorities to ensure
more time to my project is
complete than complete. Sacrifice
expected other uses of my

time.

Scope Creep The scope of my Low Medium Constant check-ins
project is lost, and with my supervisor
my objectives to ensure my
become vague/not project objectives
well defined and aim stay on

track and | stay
aligned to those
objectives

Communicaticn My aimSehjecties Lowy High Constant check-ins

Failure aren't with my supervisor
communicated to to ensure they
my supervisor, and know what | am
my project begins working on, what |
to stray from the armn aiming for, and
grading scheme what my final

deliverables will be

Loss of Code | lose project code | Low High Ensure my code
due to corruption follows the 3-2-1
or other principle: 3 copies
indeterminate of my code, 2
factors physical, 1 cloud

Unexpected The videos Medium Medium The videos will be

Workload documenting my cutin quantity and

increased in length.
Shoricuts will be
taken in making
them that affect the
viewing experience
as opposed to
documentation

quality

85

APPENDIX C: PROJECT INITIATION DOCUMENT UP2157533

Vi) Project Deliverables

- Complete project scurce code

- Requirements specification to run source code in conjunction with game files
- User guide

- Test strategies, methods, and results

- Final report

- Final series of videos documenting my work

1X) Project Approach

The Agile Project Management Methodology

My project will completely embody the Agile Project Management Methodology. This methodology follows
twelve key principles that allow developers to focus on four key values (Highsmith, 2017):

Individuals over tocls

Working software ower comprehensive documentation
Customer collaboration over contract negotiations
Responding to change over following a plan

LA

The reascn I've selected this PMM is that the agile method is very suited to my needs and work style. The key
principles and values are cnes which without realising I've come toc embody in my own personal coding.
Creating working software owver intense documentation and responding to change over strict plan following is
exactly how | can work efficiently and effectively.

The key principles are slightly geared towards businesses and teams; however | plan to simply take the core
values and make them my own. As such, | have rewritten the twelve principles intc my own personal five that
will guide my project management throughout the year.

- Harnessing change throughout the entire development cycle
This principle focuses on how you respoend to issues and errors. As opposed to adding changes to a list to be
complete during downtime through the traditional SDLC, through each cycle of feedback and iteration you
welcome change in your project and adapt to its criticism and needs.

- Deliver software frequently at regular intervals
This principle may be hard in practice; however | believe prioritising regular software updates can both ensure
steady progress on my project as well as allow ample time for feedback from my supervisor. This also
combines ancther principle which is to pricritise a steady pace over highs and lows. By ensuring you're always
making censtant progress towards your aims and cbjectives keeps the mind sharp which in turns increases
your efficiency.

- Working software is the primary measure of progress.
Measuring progress whether it be through a Gantt chart or checklist net only limits freedom and creativity, but
also personally does not suit my workflow. By using working software to measure my progress through the
project, I'll be able to have a solid understanding of where | stand in my project and what the next steps will be.

- Simplicity in maximising the amount of work not done.
This principle is probably the most important. Minimising the amount of bells and whistles you work on while
instead pricritising key features that come from your regular feedback is what will allow me to ensure my
project stays on track.

86

APPENDIX C: PROJECT INITIATION DOCUMENT UP2157533

- Regular reflecticn on how to increase efficiency
Whether it be more meetings with my supervisor or utilising my resources and facilities better, it's important to
constantly reflect and remain vigilant in holes in your efficiency.

These principles will hopefully guide me towards efficient and effective work on my project. ['ve tried to avoid
using the phrase “completion of my project”, as a key idea in the agile PMM, is that the work is never done. You
work at a constant rate, and constantly iterate and improve your software. This value is embodied in the figld of
machine learning, as a developer will need to constantly train, code, and retrain their machine to improve its
performance in its expected field.

It's important to state that this PMM applies to the development of my project, and less to the initial phase of
secondary research. This field is new to me, and while my course covers some aspects of this field, it's
inevitable that | use the facilities and resources available to me to study and learn more about machine
learning, and how | can begin my project’s development.

Iwill embody the agile PMM in my documentation of this project, which will be done in video form. | plan to

create videos that align with my report to document my progress, These videos will be uplcaded online for
anyone to watch, as well as forwarded to my supervisor to keep them in the loop.

Highsrnith, 1. (2001}. Manifesto for Agile Software Developmant. Website. https:/fagilemanifesto.ong/

X) Project Tasks and Timescales
Mo. Stage Dates Main Task
1 Project Initiation 14410024 - Complete PID, confirm supervisor and moderator,
25/10/24 complete Gantt chart and have a sclid vision for
the project
2 Study + Planning 26/10/24 - Identify and complete study on field, create first
081224 documentation video, complete ethics form, and
58t up project environment
3 Project Development 0941272024 - Complete beta project + report, complete
3000372025 iterations, complete satisfactory project
presentation and iterate according to feedback
4 Completion 3/03/2025 - Final touch ups and feedback on project, submit
15/05/2025 deliverables, complete final project presentation

The agile methodology ultimately is not suited for the planned dates in a Gantt chart, however while my
development may not line up perfectly with the timeframes, | plan to guarantee | stay at least within the main
stage timeframes, as that will ensure smooth development while not impeding on my methodology.

X Supervisor Meetings

My supervizor and | have agreed that meetings will be scheduled as necessary. | will schedule mesetings
occasicnally to ensure my supendisor is aware of my current rate of progress, as well as share my created
videos with them that document my progress. My supervisor has also agreed to maintain contact with me in
cases where | forget/do not schedule meetings with them. Lastly, as mentionad in my PMM section, | will keep
my supervisor in the loop through my video documentation of this project.

87

APPENDIX C: PROJECT INITIATION DOCUMENT UP2157533

Xll) Legal, Ethical, Professional, and Social issues

Legal:
- Copyright infringement. | am using a game created by an individual developer, however a beta
version of the game is available online with all the source code, so | do not believe this willbe an
Issue.
- Anotherlegal issue could potentially be me using APls and libraries created by other people for my
project. However, due to the fact that | will not make money selling this project, | do not believe this
will be anissue.

Ethical:

- While artificial intelligence can lead to ethical issues, due to the nature of my project and how | plan
to produce all the training data myself, there are no ethical issues.

- Ifl have people suffering from “Ladder Anxiety” interact with and potentially test my Al, it could be
anathical issue if | choose to not reveal the opponent as an Al with the intenticn of gauging how
“real” the cpponent felt.

- Iflchoose to play with this Al online, it could be an ethical issus to have players think they're playing
against a real opponent, only to be playing against an Al.

Professional:
- Maintaining confidentiality with anyone involved in the project may be difficult due to the accessible
nature of my documentation videos.
- Preventing bias in my project, as | know what the “ideal” cpponent would play like, could be a
professional issue in the future.
- Conflict of interest, where | could potentially narrow down on a specific vision for my project, that
more aligns with my personal interests as opposed to the interest of the project.

Social:
- Although my documentation videos will be available online forviewers to see, | don't believe this
will spawn any social issues.
- Ifl choose to have players suffering from “Ladder Anxiety™ test my game, finding them in a way
could be a social issue considering they might also suffer from social anxiety, making them hard to
find.

88

APPENDIX C: PROJECT INITIATION DOCUMENT UP2157533

Appendix A. Gantt Chart

- — PN oo oo oo AR oo oo o
o BEE——]
v . - — s
— . ——— H
e . ———
—— . ——
— . ——— =
bt B L
——r—— . —— |]
o ——
—_——— —— —
— .
[—
B . e s
[N—— J—
———— . ——
—— . ——
—
B R
[— —
— —
PO ——
———— —

e . ——
e . ——
- . e —
v - w——
e . e —
R — - ———
T - ——
v . ——
————
—— e e ——
————— ——
eaer bemes
ot e ——
———— - —
———— — e
e
s ——— —
LR ee—
——— ——

89

Appendix D: Logs

=

Fs

w

w

W

¥ O¥ W

Logs

Log 1-Week of 02/12/2024

From October to around mid-November, | did not work too much towards my project. | was focussing
on my other modules as well as finishing up personal projects so they would be out of the way, and |
could delegate all my time to my final year project.

Az of writing this, | have made the following progress:

| selected my supervisor, my moderator, as well as completaed all my project initiation steps
and completed my ethics form.

I downloaded the source code for the game | wish to integrate my Al into and downloaded the
necessary software (Unity) to be able to run it

| began researching differant methods of neural network implementations. This research will
gointo my literature review in my final year report, as well as give me the understanding needed
to take the next steps to my project.

lupdated my project plan to make it more accurate to my situation. Upon beginning research, |
was able to narrow down my minor goals as well as get a better understanding of what exactly
it will take to complete my project.

As of now, my next steps include:

Finalising my project environment. Ensuring it is properly crganised on GitHub, on my desktop,
and backups exist where they need to.

Completing my research and settling on a neural network implemeantation method.
Farmalising my research into my literature review.

Translating all the progress | have made into a video that can be uploaded to YouTube, for the
sake of keeping my supervisor up to date and providing content that can be used to help grow
my channel.

Appendix 1: Updated Gantt Chart

Fimal Year Project - [oRrT—

APPENDIX D: LOGS UP2157533

Log 2 - Week of 09/12/2024

This week my research on neural network implamentations was ending. | began writing up my
research into my final draft paper.

| also decided that other sections of my report needead to be completed to contextualise my research,
and so | began work on that too, As of this weelk the sections to be completed were:

* Artifact Specification

-

Project Aims, Objectives, Context

-

Review and selection of neural network implementation methods

|l also aim to complete all pending tasks for this week and the previous week. Finalising my project
environment was completed. | ensured the repository for the original Footsies code had been
appropriately imported into my own GitHub and the readme has been updated to describe my project.
| had alzo later in this week completed my research, chosen my method for implementing a neural
network, and formalised my research into a critique and evaluation in my literature review. The last
steps where to ensure my project aims, objectives, and context were up to standard, as well as my
artifact specification. Once all these were done, | could create my documentation video (likely
covering this week and the previous week'’s logs) and be fully complete with the “study and planning”
saction of my Gantt chart.

| do however have personal commitments for this weelk. Thursday, | leave, and Monday night | return,
50 while I'm away progress may not happen or be very slow, though with not much to do | aim to get as
much clone as possible.

91

APPENDIX D: LOGS UP2157533

Log 3 - Week of 6/01/2025

My last log left of mid-December, and due to the Christmas break as well as personal commitments, |
have not been able to work on my project till now. As of current, all pending tasks are completed and
listed below.

There is some overlap with these tasks and tasks | have already completed. This is because due to the
long brealk, my memory has fallen short, and | would like to ensure that everything has bean
completad to a standard worthy of my approval.

Completed tasks.

Project Context, Aims, and Objectives

Artifact Specification

Create a glossary of terms used.

Review and selection of neural network implementation methods

Enszure justification for final decision on neural network implementation approach is up to par
(with research on LSTM memory cells)

Create a backup of my project on my laptop.

Go through the marking scheme and create a word document for each section.

Designed a checklist that ensures I'm constantly keeping up with the marking scheme.

Using the aforementioned word documents, create a rough final report outline.

Translating all the progress | have made into a video that can be uploaded to YouTube, for the
sake of keeping my supervisor up to date and providing content that can be used to help grow
my channel.

YV ¥Y Y

Y ¥ ¥ Y Y

92

APPENDIX D: LOGS UP2157533

Log 4 - Week of 3/02/2025

The winter break is officially over, and with that being done | can now dedicate much more of my time
tomy project. As of now, I've set up everything | need to begin working on the design of my systam,
and so the first goal of this week is simple.

Research, create, and complete the software that can export data from the game and pre-
process it.

This falls under the *director” part of my overall software design.

Ensuring the data is extracted in itz entirety, as well as only extracting the essential data, before
processing the data in a format that can be fed into the neural networlk is a key step in being able to
effectively train my networlk. IT the systems that grab the data are efficient and work well, then training
the network becomes easy.

This task can be split into the following:

List all the data available and decide what needs to be extracted.

Write code that allows for the extraction of all relevant data.

Research pre-processing techniques and important considerations to make when processing
the data.

Write the code that takes the extracted data from the game and processes it into a format
suitable for the neural network.

A

W

| decided after some brief research to use the TensorFlow Keras APl to build my LSTM model. This API
supports my chosen coding language (python), supports LSTM maodels, and has useful data
normalisation and discretization features that may be required later. While initially | was planning on
preprocassing my data to match whatewer APl | choose, | decided to choose the APl first, and not
consider it while collecting my data. APls like Keras feature many methods of data preprocessing, and
furthermore, | believe restricting my ability to collect data by fear of not being able to process it
correctly would hinder the overall project.

| chose Python for a few reasons. The first being it supports TensorFlow, as well as Matlab. While | do
not have plans to use Matlab, with the volumes of data that | have it may prove useful in the future.
Furthermore, Python is the language | have the most experience in, I've done some practice with Java,
but using Python means | don't have to worry about learning another new language, which | already
have to do for the Footsies source code.

Itwas at this point | also decided to update my Gantt chart to better reflect my future plans as well as
progress up until this point. | realigned my goals by giving myself two weeks to complete my data
preproceassing, with the rest of the “Project Development” section being dedicated ta work on my
report and continuing on my project. The “project tasks™ being specifically vague to allow myself
ample room to work onwhatever | deem necessary.

Appendix 2: Updated Gantt Chart ==

93

APPENDIX D: LOGS

I updated my report and literature review to talk about the research | did on preprocessing as well as
the discussion of the data formats within the source code. A small piece of code was committed to
the master branch upon first starting the project. The code allows for logging of training data by using
a frame counter to log all relevant actions within a round and output to a Log file when the round ends.
In hindsight, this should've bean its own branch. However, due to the nature of the piece of code being
minor, | decided to leave it be.

A new branch called data extraction was created. | then decided on what relevant information to
provide for the Al

Vector "position”
float "velocity_x"

bool "isDead”
int "vitalHealth'
int "guardHealth’

int "currentActioniD”

int “currentActionFramea”

int “currentActionFrameaCount”
int “isActionEnd”

int “isAlwaysCancelable”

int “currentActionHitCount™

int “currentHitStunFrame”

int "izinHitStun”

The above is a list of allvariables stored as relevant information about the “Fighter” class that controls
the player. These were chosen due to their potential relevancy, although they do not encompass every
variable used in the Fighter class.

With the following variables that needed logging specified, the next step was to use the log writing
function to add these to the log file.

Velocity refers to moves that shift the players position, as opposed to direct movement such as
walking forward, so was deemed unnecessary to include,

Hit Stun referred to moments where a fighter was inactionable after being attacked, but also during
the execution of an attack. Will have to decide whether or not to include this.

The guard broken state was considerad, but deemed negligible, as when guard broken the fighter
returns a different state code which can be used for the same applications as a guard broken status.

Vital Health was deemed inconsequential, due to it being a binary value that is also represented by
the “isDead” variable.

The variable “isAlwaysCancelable™ was deemed necessary, as this could allow the NM to determine
whether itis in an actionable state.

94

UP2157533

APPENDIX D: LOGS UP2157533

The entire section of the code that controls logging the fighter's states was moved after the fighter
updates that occur each frame, this was to fix an issue where “isDead™ would never show true, as the
datawould be logged and exported before the variable could update.

The final list of variables that were to be logged in the training data were the following:

Position

Guard Health
Cancellable
Dead

Current Action ID
Hit Stun

VOV WY YWY

Thesa weren't necessarily the “right” choices, but the choices that were deemed to be the most
relevant and helpful for the neural network. It was important to not choose too much, as to slow down
training time for what could potentially be little benefit.

The next problems to solve where the following:

- Junk data
The data taken from the game, albeit good, could be unnecessary in size when training the NN on
thouszands of interactions. While not including the whole round playback as a solution seemed
intuitive, by only including the final moments before a round finished may cause problems with the
MM, specifically, how does it learn how to behave in the moments before that?

- Labelling the data
Labelling the data as either “good™ or “bad”, to encourage the MN to imitate “correct” behaviours was
another issue inand of itself. Is a “good” round simply a round won? It is definitely an assumption to
claim that, however it seemed like the best if not only option as of now,

The next task was deciding exactly how | want to output the training data. Although I've used text files
as logs, | nead to decide whether another format of logging would be more effective.

95

APPENDIX D: LOGS UP2157533

Log 5 - Week of 10/02/2025

Tasks from last weelk rolled over to this weeld. This week | had a meeting with my supervisor and
moderator to check up on my progress as well as answer some questions | had. The meeting proved
very useful, and here are some conclusions | came to as a result of it:

* Selecting variables to include in my training data.

I realise now | was prematurely chasing optimisation, when if [were to be incorrect in my variable
selection, it would require redoing hours of data collection. As a result, I've decided to include every
variable in each training data set. This way, when | come to preprocess the data and train my model, |
have more flexibility in trialling different combinations of variables.

Labelling the data

Another problem with a relatively similar conclusion. That being, | should simply record my training
data first and worry about repercussions of too much data later. Specifically, | will keep rounds that
only include wins and scrap the rest. If the time comes during development that the model takes too
long to train, then | can reevaluate the data I'm using.

Managing my report

This was a rather vague collection of questions | had, but they all pertained to the directionless feeling
I had regarding the report. | felt there was so much to write about each minor thing, and as a result this
caused some stress. Speaking to my supervisor and moderator, they simplified things for me. The
lesson | got out of it was to take the overarching concept I'm working on and explain it simplistically in
layman’'s terms. It’s not necessary to document evary minor detail, as long as | can ensure the overall
thing I'm doing can be understood by someone not knowledgeable in the field.

With this advice, my goals for this week shifted slightly:

* Perform some more research on training data gathering techniques, both within my specific
field and outside of it, and see what | can learn.

Rewrita the final function for gathering training data, as well as decide on a final format for the
data.

* Go through my report ensuring the general outline is well constructed.

¥ \Write up the sections regarding the function | am writing as well as any research on the

function completed.

The first task was research on training data gathering techniques. Unfortunately, research on this field
iz very limited. However, based on a few sources (MariFlow, Blade & Soul) | concluded that not only
should | (for now) collect data on every variable, but also every button pressed by the player.

96

APPENDIX D: LOGS UP2157533

Although technically the current button press can be extrapolated by the current state the playerisin,
the goal of the neural network is to emulate my play, and so | decided that | should record all my
inputs regardless,

Lastly, a technigue known as data skipping was implemented in a project (Blade & Soul) which may
prove useful when it comes to training the networlk, however, was not necessary at this stage.

And with that, I was ready to make the final adjustments to the data gathering function. The function
should:

Capture variables of all fighter charactars at each instance

Capture all inputs performed by player 1 {myself)

Detect if the game was a win for player 1, and if so, output the data into a labelled file that can
be used for training.

¥ ov Y

With that done, the next step was to implement validation and verification methods to allow me to
check the function is working as intended. The function operates in two steps.

* Record data at each frame.
» Qutput the data to a text file.

Both of these require some sort of verification, and so | decided to insert try functions at each of these
stages that can catch any exceptions. While simple, a try function is all that is required to verify this
function as itis relatively static with the data it requires.

The function was complete, the next step was to simply update my report.

97

APPENDIX D: LOGS UP2157533

Log 6 - Week of 17/02/2025

This week consisted of solely working on my report, from making the report look good, to ensuring all
chapters that can be written up, are. The work is still not complete, although it looks promising.

This is an updated version of my Gantt chart. I've decided to leave research on preprocessing fora
later date, priority lies in completing my report and beginning to collect training data. My short-term
goal is to complete all gathering of training data as well as all current work that needs to be done on
my report by the end of the week commencing 24" of February.

My current to do list is as follows:

Complete all work on report that can be done, including writing up chapters that | can and
ensuring all my references are in order.
Begin harvesting training data.

Az lworked on my report | decided to also begin collecting training data. Before doing so however, |
emailad an example copy of the training data to my moderator, just to make sure it seemed okay. | was
anxious to begin harvesting hundrads of data files only to find I"ve made a critical error, so | wanted to
be sure. | also merged the data-extraction branch | had been working on up until now to my main
branch.

Meeded to redo elements of the literature review. Although | talked a Lot about different
implementation methods for the neural network, | failed to critique the different solutions in their
efficacy.

98

APPENDIX D: LOGS UP2157533

Log 7 - Week of 03/03/2025

The previous two weeks involved me writing up and working on my report as much as | could. |
decidead that the report was in an acceptable state and priorities should shift back to the artefact.
With that, | decided that collecting training data would be the focus of this weelk.

Ramadan has begun, which means my work is slightly slowed, be it lack of focus or not being home
due to visiting family. However, I'lL try maintaining a good work pace throughout this month.

99

APPENDIX D: LOGS UP2157533

Log 8 - Week of 10/03/2025

Progress was slow last week again due to religious commitments. However, more progress had been
made collecting training data. At this stage, there was a comfortable 300 games recorded and ready to
be used.

Itwas also decided at this point to switch up the data gathering method. The current issue with my
method is that the existing Al is bad. “Bad” in the sense that the Al operated by queusing random
sequences of moves, and more importantly, uses special moves at an inhumane frequency. To
combat this before more training data was gathered, the enemy Al was modified to decrease the
frequency of these random special moves, leading to more realistic battles.

100

APPENDIX D: LOGS UP2157533

Log 9 - Week of 28/03/2025

All data has been collected; a total of 1300 data logs summing to approximately 10 hours of data
gathering.

This week would prove busy for me due to Ramadan approaching its end and having religious
commitments, however, this week's goals were laid plain and simple.

Write up necessary report sections regarding completion of training data.

Update Gantt chart and create a solid plan for the remaining 6 weelks of this project.
Scheduls a general feedback meeting with my supenvisor.

Begin working on the naxt step of the project.

L

I aim to complete all of these goals by the end of this weelk. The “next step” laid out in the final goal
will hopefully be creating an interface for my model to interact with the game engine, however this will
require some planning beforehand.

The report was updated, ensuring that everything up until this point in the project was written up and
complete. The Gantt chart was updated, and it was decided that the next step to complete would be
the accompanying documentation video.

Before that however, | booked a meeting with my supervisor. Mainly for the purpose of general
feedback, and to answer any quastions | could come up with.

101

APPENDIX D: LOGS UP2157533

Log 10 - Week of 07/04/2025

All the steps from last week wera completed. | had written up the report, completed the video,
updated my Gantt chart and evaluated where | stood on my project.

Mext came beginning work on the means of which the game would communicate with the netwaork.

At this stage | had decided to rename the “player™ to the “middleman”, the reasoning for this was
simply the name “middleman”™ more accurately representad the function of the code, which was not
to just play the game but to also handle communication betwean the Footsies client and the neural
netwiork.

The middleman needed to perform the following tasks:

* Receive the current game state from the game running in C#
Process the game state via the neural network
* Return the neural network outputs as inputs for the game

The middle step was to be done later, right now the priority was communication via the Python script
and the game. After searching for methods of communication between Python and C#, the ideal
solution seemed setting up a Python server and having communication be handled via Websockets.

The vision was simple. Upon launching the project, a python server would initialise and establish
connection with the game. Then, at every frame, the game would send the current state to the server,
which would then worlowith the neural network model to generate an ocutput and inject the ocutput
back into the game to control the player 2 character.

The code was complete, and the server and client could send messages to one another. However,
with the implementation of this code arose a new problem; the client was blocking the main thread.

Currently, the client was running a while loop to check for messages, however, when run alongside the
main game, itwould cause the game to freeze, stuck in a permanent loop. The fix for this was relatively
simple and required running the client code asynchronously using a semaphore to control message
sanding as well as swapping the queue for the C# “ConcurrentQueue” class. Once the issue was
solvad, the code was finalised and tidied up, until the middleman compaonent was as complete as
could be. While the work done this week was essential, it didn't amount to much inregard to creating
the neural networl, and so my Gantt chart was updated respectively.

Despite working hard, | kept pushing deadlines further and further, which meant | had to work harder
to ensure this project would be complete,

102

APPENDIX D: LOGS UP2157533

Log 11 - Week of 14/04/2025

The middleman was complete. This week was all about the neural network. By the end of this week,
the neural network should be operational, and ideally trained, although the priority lay in
understanding the Keras APl and creating the networlk.

The first step was translating the many training data files into a format readable by the neural networl.
While | didn't know the exact variables the neural network needed during training, the format of the
data thus far [txt files of a sequential series of inputs) would not suffice.

It was becoming apparent that optimisations needed to be made to ensure the network could train in
a reasonable amount of time and not require days to work through all the data.

The main challenge however before optimisations could even be done was how the data would be
translated into a dataset the network could train on.

Fandas is an open-source library designed to create and manipulate easy to read data structures for
the python programming language. Specifically, the Pandas “DataFrame” class allows for the creation
of a two-dimensional data structure that allows for easy processing and handling. The TensorFlow
documentation also provides tutorials for easy loading of Pandas DataFrames.

Code needead to be written that could extract data from the training data sets and convert them into
DataFrames to be used by the neural network. Since the data was stored in consistently structured
text files, using the built-in parsing technigues that Python provides.

The code for this would be splitinto two methods:

* Reading the data from the text file and parsing it
* Turning the parsed data into a Pandas DataFrame

The data that needed to be exported from the file was:

¢ currentlnput: integer

¢ position: float precision 2 (second float can be ignored asitis always 0
¢ isDead: bool

¢ velocity_x:int

+ vitalHealth: int

* guardHealth: int

& currentActionlD: int

¢+ currentActionFrame: int

& currentActionFrameCount: int
¢ currentActionHitCount: int

* isAlwaysCancelable: bool

& currentHitStunFrame: int

¢ [sinHitStun: bool

If we parse the data such that each row is transformed into an array, we can store each array in a list,
convert it into a numpy array, and use Pandas to turn the final result into a DataFrame. We can also
enumerate the training data files to retrieve an index. This index can be used to identify the different
rounds and ensure that all data while stored in one DataFrame is still separated by round.

103

APPENDIX D: LOGS UP2157533

Izsues while coding:

Figuring out why not all parsad lines would append to the DataFrame
Learning and implementing python builtin re functions and methods
Finding the most efficient way to parse through all the data

Deciding betweean one or many DataFrames

Y VY Y

The last step was to make note that code would need to be written to trainfload the network, which
could come later in another file.

The next step was to preprocess/normalise the data. Below is a list of all the data being storaed and
their ranges.

* roundlD: integer —index of round, range is irrelevant
* frame_count: integer —range(1, 687)

* currentinput: integer - range(0, §)

* position: float precision 2 —range(-2.63, 4.3}
* jsDead: bool

» vyelocity x: int-range(-3, 7)

+ yitalHealth: int-range(0,1)

+ zuardHealth: int - range(0,3)

* currentActionlD: int—range(0, 500)

*+ currentActionFrame: int—range(0, 54)

* currentActionFrameCount: int —range(1, 500}
* currentActionHitCount: int —range(0, 1)

* sAlwaysCancelable: bool

+ currentHitStunFrame: int —range(0,30)

* isInHitStun: bool

I began on the data normalisation process. Each column needed to be normalised differently, as
some variables were discrete, some Boolean, and somea continuous. | simply began normalising each
value as they came.

The currentinput column consists of one integer of range 0to 7. This is a bitwise mask, since the game
operates with three buttons, left, right, and attack, the game applies a bitwise mask to the buttons
pressed and returns an integer. We can decompose this bitwise mask using numpy operations, and
split the results into three distinct columns, one for each button pressed, and repeat this for each
player. Shifting the bits to examine one bit at a time, then computing the bitwise AMD of the examined
hit and 1, returned a result of whether or not the button was pressed, which could then be put back
into the DataFrame.

The currentAction|D required one hot encoding. Each ID was taken and separated into its own
column, with a bit flag to represent if that 1D is active.

Position and velocity both required simple min max normalisation, however its important to note the
min and max valuas for both variables were saved to a config file for access later, as the networlk
needed to ensure it operated on the same scale asthe training data.

The Boolean values were converted to 1/0 for T/F respectively.

104

APPENDIX D: LOGS UP2157533

current&ctionFrameCount and currentActionHitCount were both dropped, as these were only
relevant to drawing the sprites. Furthermore vitalHealth was also dropped, as it served the same
purpose as isDead.

Finally the normalisation was complete. The report was updated, specifically the development and
design sections for the preprocessing and normalisation respectively.

Mext was the neural network. In regards toits actual design, the following needead to be planned:

* datadesign
o how many timesteps/frames in a sequence
o splitting data into separate rounds
o aligning inputs and targets
* feature engineering
o feature selection
o derived features
* modelarchitecture
o sequential or functional
o layertypes and counts {lstm, dense)
o loss function and metrics
* training pipeline
o trainingfvalidation/test split
batch saquences for lstm
meta parameters like epochs, batch size, learning rate
monitor training metrics like loss and accuracy
saving model checkpoints

0o o oo

* realtime interference
o buffer the game state into a live input sequence
o normalise data same way as training
o feedinto model and get prediction
o take outputs and convert into button presses
o return button presses back to game
* evaluation and testing model
o test accuracy and reliability
o run simulated matches against same opponent (existing ai)
o detect and fix any biases/instability

Data Design:

The nature of the data being used for training is time series data, where a time seriesis a
chronological sequence of observations on a variable of interest (source infroduction to Time Series
Analysis and Forecasting by Douglas C Montgomery).

Because of this, determining the optimal sequence length, i.e. the number of inputs that should be
fed as a sequence to the network, is most important. Determining this optimal sequence length, orin
other words the optimal starting point (O5P) as described in this paper (source Optimal starting point
for time serfes farecasting by Yiming Zhong), is a both important and sometimes disregarded part of

105

APPENDIX D: LOGS UP2157533

time series forecasting. Fortunately, in this instance the time series is relatively consistent, and
although some rounds vary mildly in length, there are no abrupt changes that could be misinterpreted
by the network given any OSP. However, a sequance too short can derive the network of context, and
too long could overwhelm the networlk. For these reasons, it was determined the sequence length of
the data being fed into the networl would be 20 frames long. This number would howsver be tested in
search for a more optimal number once the network was created, although 20 was chosen
temporarily due to the longest animation for a mowve in the game being 20.

Mext was splitting the data into separate rounds. This could be done simply with the Pandas library
using the group_by method. Splitting the data into rounds, those rounds can then be splitinto
saquences of size 20 (as justified above) before being fed into the network for training. Each round
acts as a mini dataset, with every sequence taken from a round being tested for the target output.

Aligning inputs and targets is simple. The current button presses for player 1 would be dropped from
the dataset and used as targets, and everything else used as an input.

Feature Engineering:

Feature engineering is an important part of the machine learning process. The performance of a
model can depend heavily on how data is represented, and feature engineering is a way to capitalise
on domain expertise to compensate for ML models inherent weakness: i.e. their inability to extract
and organise important information from a dataset (source Representation Learning: A Review and
New Perspectives Yoshua Bengio).

Feature selection is the process of building more comprehensive datasets, improving training
performance, and prioritising important variables (source Feature Selection: A Data Perspective by
Jundong Li) to reduce noise in the network, which can cause overfitting and introduce poorer
generalisation capability (source The role of feature selection in artificial neural network applications
T KAVZOGLU). Because of this, it's important to select only necessary features to train the network.
There are two methods to do this.

The first of this being domain expertise. The author of this project being an avid Fighting Game fan and
professional player meant that there is prior understanding of the importance of different variables.

The second of which being statistical methods such as feature evaluation criterion, search
procedures, and model selection strategies (source FEATURE SELECTION WATH NEURAL NETWORKS
by Philippe Leray).

Another important consideration to make was feature derivation, which is the process of manually
creating new features (source A Deep Learning Approach with Feature Dervation and Selection for
Overdue Repayment Forecasting by Bin Liu). The existence of features such as the relative distance
between players or whether a player is approaching or not could positively affect training speeds and
network accuracy.

Primarily, domain expeartise would be used to determine relevant variables to track as well as derived
features, and during later testing, more rigorous proceduras could be tested to observe their
performance on the model.

Model Architecture:

106

APPENDIX D: LOGS UP2157533

A sequential model was the obvious choice as not only is it the simplest, it fits the required structure
of my network, that is a stack of layers that feed into three outputs (button presses). ITwas important
to start simple and optimise layer sizes and counts later, [source Deap Learning with Fython by
FRANCOIS CHOLLET) recommends G4 units when working with a large number of features (46 classes
in his case} and using an LSTM layer, So the unit size 64 LSTM layer was supplemented with a dense
layer of 32 units, and an output layer which would consist of a size 3 dense layer, one for each output,
with a sigmoid activation function. The sigmoid activation function allows for each output to have an
independent probability while returning a 1 or 0 for a button pressed or unpressed.

The loss function is used to determine how well or poorly a model is performing by calculating the
accuracy of a model's predictions compared to the real targets. Due to the use of a sigmoid activation
function for the three outputs, binary cross entropy was chosen as the loss function.

Binary cross-entropy is used to measure the difference between predicted binary outcomes and
actual binary labels, where the output of a crass-entropy function is a probability between 0 and 1,
and the loss increases as the prediction strays from the actual label (source Binary cross entrapy with
deep learning technique for image classification by Dr.A.Usha Ruby).

Loss = —[v - log{y™) + (1 —y) - log{1 — y™)]

The above is the formula for the loss calculation, whera v is the actual label and v* is the predicted
probability. The closer these two values are, the lower the loss,

Lastly, the only metric that will be considered is accuracy, which is simply a percentage of how many
times the predicted label matches the actual label.

Training Pipeline:

The first task to handle would be splitting the data. To create the model, a training, validation, and
testing set would be required.

The training data set would be what the network trains on, the validation set is used during the training
process to tune things like model structure and lossfaccuracy, and the test set is used at the very end
to determine the final accuracy of the model.

Since the second dataset (with the updated Al) would be used for training, the approx. 1300 training
files would ke used, 1000 would be usaed for training, and the last 300 would be split evenly for
validation and testing.

From the training data, the rounds would need to be extracted before being sequenced and fed into
the network. This could be performed easily using built in methods from the Pandas API.

Training the network involved defining certain hyperparameters. These were;

* Sequence length
* Epochs

* Batch size

Learning rate

107

APPENDIX D: LOGS UP2157533

The sequence length was already determined to be 20. Epochs simply refers to the amount of passes
the network will do over the training data, and a standard number of 10 would be used. The batch size
wiould be the number of sequences fed into the network at once, this is again something that could be
tuned during training, so 64 would be selected for now and potentially changed later. Lastly was the
learning rate, which would be set to 0.001, which was the default for Adam.

Adam stands for Adaptive Moment Estimation and is the standard optimiser for Keras sequential
networks. The optimiser controls how weights are adjusted given the current loss function, and using
Adam as the optimiser would not change during development.

Lastly came monitoring metrics and saving model checkpoints, Metrics are displayed automatically
while training via the Keras “model.fit/)” function, however model saving needed to be explicitly
written in the code, A model could be saved at each epoch if the value being monitored is at a new
best. The most common values to be monitored are the loss and accuracy, however it was clear
immediately that loss would be the variable to monitor. Simply put, the network’s predictions don't
need to match 100%, they only nead to be close to the true label, so monitoring this would be ideal.

Evarything that needed to be designed for skeleton of the network to be created had been designed,
50 next was coding.

The coding process was simple enough, after all TensorFlow makes things very easy, tweakable
parameters and class objects allowed for very easy creation of the netwaork.

The next step was integrating the network into the game. Methods for message sending and receiving
weare already complete, and the TensorFlow AP| came with easy functions that could take an existing
model and use it to predict an output given a sequence of data. The integration could be created in a
class, with that class handling the processing of live data from the game as well as pradictions. This
was relatively simple, however there were some problems that arose, those being:

* Calculation speed of the network
* Game state sending
* Turning the network output into an input for the game

Mone of these problems required much effort to solve, and they will be discussed in the final repaort.
Below is the project plan Gantt chart as of the end of this weeak.

108

APPENDIX D: LOGS UP2157533

Log 12 - Week of 21/04/2025
As of last weel, the project was done. That is:

Training data could be created through playing the game.

A pre-processed dataset could be generated via the training data.

An LSTM neural networlk could be trained via the dataset.

This model could be saved for live game prediction.

The Footsies game could launch a local client and Python server.

The game could send live game state information to the server, which could uze the netwaork to
generate and return an output.

The output could be used to control the P1 character, thus having the network play the game.

L A U U U

'

Although the project was complete, the network wasn't the best. That meaning it would only attack
repeatadly, aswell as confidence in its predictions being fairly low, This is likely a symptom of both a
relatively loww amount of training data as well as a very unoptimized network. Before testing and
improvement of the network could take place however, the following tasks needed to be completed as
of this week:

® Complete game integration section of the report.
Send report draft to supervisor (deadline: 24/04).

* Beginimproving the network.

Today is Thursday, and as of today, the first two tasks had been completed. In fact, the refactoring of
the entire report had taken place, ensuring every chapter and subchapter was well written and
correct. Some issues remained, mainly the word count, however this would be fixed with help from my
supervisor.

Mext came test planning in attempts to improve the network.

TensarBoard is a tool used for improving networks, it allows for logging, comparisons betweaen
models, and visual debugging. Using TensorBoard, a test harness could be created, which would
allow for reproducible testz in an attempt to optimise the network. An experimeant model build
function was created that would build a model using a config file to determine different features.
These models were trained, and logs were saved to a directory via TensorBoard. Now multiple model
configurations could be created, befare testing all of them.

109

APPENDIX D: LOGS UP2157533

Log 13 - Week of 28/04/2025

The training process was underway, and the following tasks had been completed.

LS

7 Atesting framework had been created. This framework allowed for the creation of configuration
files that alter the structure of the network. Within the framework includes:

o A configuration file generator

o Adirectory to store experimental models, configs, and training results
This framework would be usad to determine optimal hyperparameters for the networl.
Embedding feature generation amywhere directly outside the already created pre-processing
file would be quite time consuming considering the crunch I was under right now. Due to this,
feature engineering expariments would e held within this file.
Minor changes were made to the entire project. Small changes such as fixing a bug with
network inputs and cleaning up some code/commenting.

W

w

The plan for this week was to complete feature engineering. The process for this was still to be
determined, and a discussion with my supervisor would hopefully spark some ideas.

Task list:

Complete feature engineering to best of ability
Complete hyperparameter tuning tests
Interactive training

Create final version of netwark

Write up report

¥ ¥ ¥V Y ¥

Hyperparameters could be optimised easily. Using the configuration file and testing frameworl,
multiple combinations could be tried and evaluated to find the optimal parametars. Hence why
feature engineering was first, and a model created using the baseline configuration was trained.
experiment_name baseline
model
LSTM unit_size
dense_unit size
dropout_rate
learning rate 1
early_stopping patience”:4

training
batch_size
epochs
sequence_length
step 1

Then, different methods to preprocess the data were employed, and again a baseline configuration
model was trained to evaluate the difference. The random state of the data split was consistent to
ensure each model trained on the same data.

To allow for experimentation of preprocessing methods, the existing preprocessing file was duplicated
and renamed.

110

APPENDIX D: LOGS UP2157533

Feature engineering was a little harder. First a bunch of columns weare made that were predicted to be
important based onwhat | thought the network needed to know, then feature permutation was used
to determine unimportant columns and drop them. Done all of this to decide the important columns,
though the deadline was rapidly approaching and continuing to tinker with this wasn’t possible.

At this point | realised the data was bad. It was too diverse and random, and the network was
struggling to pick patterns apart despite any feature engineering done. In hindsight more time
should’ve been spent manipulation the gathered data, though with how little | knew about machine
learning at the start of this project, | couldn’t have guessed that.

Regardless, with the final features established, the hyperparameter test was run, and the best model
was chosen. | chose the model with the best F score, since | reckon it was more important than loss,

and definitely accuracy.

111

APPENDIX D: LOGS UP2157533

Log 14 - Week of 05/05/2025

Everything was complete up to this point. The last steps were finalising the report and submitting.

112

Appendix E: Glossary

Blade & Soul - An MMO RPG genre video game, with a combat system influenced by
fighting games.

CPU Opponents — Al opponents.

Fighting Game — A genre of video game that primarily revolves around player versus
player combat, games within this genre can have realistic visuals and design philosophies
(For Honor, Virtua Fighter), or have more cartoonish/fantasy elements (Granblue Fantasy

Versus, Street Fighter)

FightingICE — FightingICE is a 2D fighting game used in the Fighting Game Al
Competition (FTGAIC), an international competition that competes for the performance

of fighting game Al certified by Computational Intelligence and Games (CIG).

Footsies — A barebones fighting game that emphasises and highlights the midrange

bh)

combat seen in many fighting games. Created and developed by internet user “HiFight.

For Honor — For Honor is a Multiplayer Online Battle Arena (MOBA) action game
developed by Ubisoft that contains a combat system which while vastly different to a
traditional 2D fighting game, contains a lot of the same principles and strategy of a

fighting game.

Game Loop — A “game loop” also known as a “gameplay loop” describes the repeatable

actions a player takes that define the flow and experience of the game.

Guard Break — A state in which a player is unable to block, and any attacks that would
normally be blocked leave the player in a vulnerable state, usually opening them up to a

follow up attack.

Hit Confirm — Also referred to colloquially as “confirming,” a “hit confirm” describes
the process of using an attack, and upon reacting to the attack hitting, engaging in a follow

up; one usually unsafe were the move to not hit (i.e. be blocked).

Ladder Anxiety — A feeling of anxiety stemming from the knowledge you are
competing/playing against a real-life opponent, the anxiety being the fear of being
judged/critiqued or simple fear of losing ELO rating, should the game provide an ELO

system.

APPENDIX E: GLOSSARY UP2157533

Mortal Kombat — A fighting game stemming from 1990s arcade roots. Known

nowadays for its brutality and gore. Developed by NetherRealm Games.

Punish — The act of counter attacking while your opponent is in a state unable to defend,
or a “punishable” state, such as after whiffing an attack, or using an attack that is

punishable when blocked.

Super Mario Kart — Super Mario Kary is a kart racing game developed and published
by Nintendo for the Super Nintendo Entertainment System (SNES).

Whiff — A miss. An attack that has neither hit the opponent nor been blocked by the

opponent.

114

https://en.wikipedia.org/wiki/Kart_racing_game
https://en.wikipedia.org/wiki/Nintendo
https://en.wikipedia.org/wiki/Super_Nintendo_Entertainment_System

Bibliography

Beck, K., Beedle, M., Bennekum, van, Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C.,
Mellor, S., Schwaber, K., Sutherland, J., & Thomas, D. (2001). Manifesto for agile
software development. Agile Manifesto; Agile Alliance. https://agilemanifesto.org/

Bengio, Y., Courville, A., & Vincent, P. (2014). Representation learning: a review and
new perspectives. https://arxiv.org/abs/1206.5538

Bueyes-Roiz, V., Quifiones-Uriostegui, I., Valencia, E., Alba, L., Quijano, Y., Anaya-
Campos, L. E., & Pérez-Orive, J. (2023). La competicion de videojuegos como
desencadenante de ansiedad y sus implicaciones en la activacion del masculo masetero.
Investigacion En Discapacidad, 9, 47-55. https://doi.org/10.35366/111118

Chaperot, B., & Fyfe, C. (2006, May). Improving artificial intelligence in a motocross
game. Proceedings of the 2006 IEEE Symposium on Computational Intelligence and
Games (CIG06). https://doi.org/10.1109/cig.2006.311698

Cho, B. H., Park, C. J., & Yang, K. H. (2007). Comparison of Al techniques for fighting
action games - genetic Algorithms/Neural Networks/Evolutionary neural networks. In L.
Ma, M. Rauterberg, & R. Nakatsu (Eds.), Entertainment Computing - ICEC 2007 (pp.
55-65). Springer Berlin Heidelberg.

Chollet, F. (2021). Deep learning with python, second edition. Shelter Island, Ny
Manning Publications.

Chung, J., & Rho, S. (2019, March). Reinforcement learning in action: Creating arena
battle Al for “blade & soul.” GDCVault.
https://www.gdcvault.com/play/1026406/Reinforcement-Learning-in-Action-Creating

Hardesty, L. (2017, April). Explained: Neural networks. MIT News; Massachusetts
Institute of Technology. https://news.mit.edu/2017/explained-neural-networks-deep-
learning-0414

Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent neural
nets and problem solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 6, 107-116. https://doi.org/10.1142/s0218488598000094

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural
Computation, 9, 1735-1780. https://doi.org/10.1162/nec0.1997.9.8.1735

Hodges, A. (2010). Alan Turing scrapbook - Turing test. Turing.org.uk.
https://www.turing.org.uk/scrapbook/test.html

Hosch, W. L. (2025, February). Electronic fighting game. Encyclopedia Britannica.
https://www.britannica.com/topic/electronic-fighting-game

https://agilemanifesto.org/
https://www.britannica.com/topic/electronic-fighting-game

BIBLIOGRAPHY UP2157533

Intelligent Computer Entertainment lab. Ritsumeikan University. (2024). Welcome to the
fighting game Al competition. Ritsumei.ac.jp.
https://www.ice.ci.ritsumei.ac.jp/~ftgaic/index-1.html

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: a
survey. Journal of Artificial Intelligence Research, 4, 237-285.
https://doi.org/10.1613/jair.301

Langkvist, M., Alirezaie, M., Kiselev, A., & Loutfi, A. (2016, July). Interactive learning
with convolutional neural networks for image labeling. International Joint Conference on
Artificial Intelligence (IJCAL).

Leray, P., & Gallinari, P. (1999). Feature selection with neural networks.
Behaviormetrika, 26, 145-166. https://doi.org/10.1007/s41237-020-00127-3

Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2017).
Feature selection. A data perspective. ACM Comput. Surv.,, 50, 6.
https://doi.org/10.1145/3136625

Liu, B., Zhang, Z., Yan, J., Zhang, N., Zha, H., Li, G., Li, Y., & Yu, Q. (2020). A deep
learning approach with feature derivation and selection for overdue repayment
forecasting. Applied Sciences, 10, 23. https://doi.org/10.3390/app10238491

Liu, R. (2017). Creating human-like fighting game Al through planning.

Lueangrueangroj, S., & Kotrajaras, V. (2009). Real-time imitation based learning for
commercial fighting games. https://doi.org/10.5176/978-981-08-3190-5_301

Luo, J. J. (2019, September). An exploration of neural networks playing video games.
Medium; TDS Archive. https://medium.com/towards-data-science/an-exploration-of-
neural-networks-playing-video-games-3910dcee8e4a

Mohd, N. N., Hasen, A. W., & Rehman, M. Z. (2013). The effect of data pre-processing
on optimized training of artificial neural networks. Procedia Technology, 11, 32-39.
https://doi.org/10.1016/j.protcy.2013.12.159

Mobhri, M., Rostamizadeh, A., & Talwalkar, A. (2012). Foundations of machine learning
(First Edition). The Mit Press.

Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2016). Introduction to time series
analysis and forecasting. Wiley.

Mozilla. (2019, November 28). The WebSocket API (WebSockets). MDN Web Docs.
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets API

116

https://doi.org/10.1613/jair.301

BIBLIOGRAPHY UP2157533

Novac, O.-C., Cristian, C. M., Novac, C. M., Bizon, N., Oproescu, M., Stan, O. P., &
Gordan, C. E. (2022). Analysis of the application efficiency of TensorFlow and PyTorch
in convolutional neural network. Sensors, 22, 8872. https://doi.org/10.3390/s22228872

Oh, I., Rho, S., Moon, S., Son, S., Lee, H., & Chung, J. (2020, January). Creating pro-
level Al for a real-time fighting game using deep reinforcement learning. Arxiv.org.
https://arxiv.org/abs/1904.03821

Pluhar, E., McCracken, C., Griffith, K. L., Christino, M. A., Sugimoto, D., & William.
(2018). Team sport athletes may be less likely to suffer anxiety or depression than
individual sport athletes. Journal of Sports Science & Medicine, 18, 490-496.

Polyrogue Games. (2019, July). Neural knight - self playing for honor neural network.
YouTube. https://www.youtube.com/watch?v=KWePzuZZ9WU

Rezaei-Dastjerdehei, M. R., Mijani, A., & Fatemizadeh, E. (2020). Addressing
imbalance in multi-label classification using weighted cross entropy loss function. 333—
338. https://doi.org/10.1109/ICBME51989.2020.9319440

Robison, A. D. (2017). Neural network Al for FightinglCE | ORKG ask. Orkg.org.
https://ask.orkg.org/item/84280164/Neural-Network-Al-for-FightingICE

Ruby, U., & Yendapalli, V. (2020). Binary cross entropy with deep learning technique
for Image classification. International Journal of Advanced Trends in Computer Science
and Engineering, 9. https://doi.org/10.30534/ijatcse/2020/175942020

Seijen, van. (2011). Reinforcement learning under space and time constraints.
https://doi.org/10.13140/2.1.2701.4409

Sethbling. (2017, November). MariFlow - self-driving Mario kart w/Recurrent neural
network. YouTube. https://www.youtube.com/watch?v=Ipi40cb_Rsl

Stancin, 1., & Jovi¢, A. (2019). An overview and comparison of free Python libraries for
data mining and big data analysis. 2019 42nd International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO), 977-982.
https://doi.org/10.23919/MIPR0.2019.8757088

T. Kavzoglu, & Mather, M. (2002). The role of feature selection in artificial neural
network applications. International Journal of Remote Sensing, 23, 15.
https://doi.org/10.1080/01431160110107743

Taha, A. A., & Hanbury, A. (2015). Metrics for evaluating 3D medical image
segmentation: analysis, selection, and tool. BMC Medical Imaging, 15(1), 29.
https://doi.org/10.1186/5128800150068x

Team, K. (2019). Keras documentation: The functional API. Keras.io.
https://keras.io/guides/functional_api/#introduction

117

BIBLIOGRAPHY UP2157533

Thesing, T., Feldmann, C., & Burchardt, M. (2021). Agile versus waterfall project
management: Decision model for selecting the appropriate approach to a project.
Procedia Computer Science, 181, 746-756. https://doi.org/10.1016/j.procs.2021.01.227

Whalen, S. J. (2013). Cyberathletes’ lived experience of video game tournaments.

Ying, X. (2019). An overview of overfitting and its solutions. Journal of Physics:
Conference Series, 1168, 022022. https://doi.org/10.1088/1742-6596/1168/2/022022

Zell, A. (1994). Simulation neuronaler netze. Vieweg+Teubner Verlag Wiesbaden.
Zhong, Y., Ren, Y., Cao, G,, Li, F., & Qi, H. (2025). Optimal starting point for time
series forecasting. Expert Systems with Applications, 273, 126798.
https://doi.org/10.1016/j.eswa.2025.126798

Zoet, Z. M. (2017). Competitive state anxiety in online competitive gaming: “Ladder
anxiety.”

118

	Introduction
	1.1 Footsies, Neural Networks, and Ladder Anxiety
	1.2 Project Aim, and Objectives
	1.2.1 Project Aim
	1.2.2 Project Objectives

	1.3 Project Constraints
	1.4 Log of Risks
	1.5 Project Deliverables
	1.6 Project Approach
	1.6.1 The Agile Project Management Methodology

	1.7 Research Approach
	1.7.1 Time Management

	1.8 Legal, Ethical, Professional, and Social Issues
	1.8.1 Legal
	1.8.2 Ethical
	1.8.3 Professional
	1.8.4 Social

	1.9 Summary

	Literature Review
	2.
	2.1 Introduction
	2.2 Evaluation of Existing Solutions and Utilised Methods
	2.3 Summary

	The Artefact
	3.
	3.1 Introduction
	3.2 Requirement Specification
	3.2.1 Must Have
	3.2.2 Should Have
	3.2.3 Could Have
	3.2.4 Won’t Have

	3.3 Summary

	IT Design
	4.
	4.1 Introduction
	4.2 The Director
	4.3 The Middleman
	4.4 Pre-processing the Data
	4.4.1 Parsing the Data
	4.4.2 Normalisation

	4.5 The Neural Network
	4.6 Selection of API and Programming Language
	4.7 Selection of Programming Language
	4.8 Data Design
	4.9 Feature Engineering
	4.10 Model Architecture
	4.11 Training Pipeline
	4.12 Summary

	Development
	5.
	5.1 Introduction
	5.2 The Director
	5.2.1 Function Implementation
	5.2.2 Farming Training Data

	5.3 The Middleman
	5.3.1 The Footsies Client
	5.3.2 The Python Server
	5.3.3 Controlling the Client and Server

	5.4 Pre-processing
	5.4.1 Parsing the Data
	5.4.2 Normalising the Data

	5.5 The Neural Network
	5.5.1 Sequence Generation
	5.5.2 Model Creation
	5.5.3 Main Method

	5.6 Game Integration
	5.6.1 The Predictor Class
	5.6.2 Pre-Processing Live Inputs
	5.6.3 Predictions
	5.6.4 The Director and The Middleman

	5.7 GitHub Release
	5.8 Summary

	Testing
	6.
	6.1 Introduction
	6.2 Initial Model Results
	6.3 Validation Metrics and Loss Functions
	6.3.1 Weighted Binary Cross Entropy
	6.3.2 F Score and Leniency

	6.4 Hyperparameter Tuning
	6.5 Feature Engineering
	6.6 Choosing the Final Model
	6.7 Final Model Ability
	6.8 Summary

	Evaluation
	7.
	7.1 Introduction
	7.2 Evaluation Against Requirements
	7.3 Evaluation Against the Project Problem
	7.4 Evaluation of the Agile PMM
	7.5 Critiques

	Conclusion
	8.
	8.1 Conclusions
	8.2 Project Aim
	8.3 Future Considerations
	8.4 Final Reflection

	Appendix A: Ethics Form
	Appendix B: Gantt Chart
	Appendix C: Project Initiation Document
	Appendix D: Logs
	Appendix E: Glossary
	Bibliography

