

Using Machine Learning to Create a

Human-Like AI Opponent to Combat

Ladder Anxiety

Baha Alfararjeh

UP2157533

Computer Science BSc

PJE40

Supervisor: Carrie Toptan

2025

 UP2157533

1

Abstract

Neural networks (NNs) have applications in many industries, with the gaming industry

specifically being oft neglected despite being ripe with potential advancements and

applications. NNs can be used to enhance and replace archaic decision-tree-based AI

agents that dominate the current gaming landscape with agents that can adapt to data,

enabling more dynamic and perceived intelligent behaviours in game characters.

Primarily, the genre of Fighting Games suffers the most from this issue, a genre where

computer-controlled opponents often utilise input-reading and perfect reaction times to

ultimately provide a distinctly robotic playing experience, an experience with

unfortunately no alternative without human interaction. This project aims to create a

proof-of-concept solution to the existing solution of CPU opponents in fighting games

with respect to the problem of providing alternative methods of play to those who suffer

from “Ladder Anxiety,” a common anxiety in gamers that stems from the fear of

engaging online with other human beings.

Acknowledgements

I would like to firstly acknowledge my project supervisor, Carrie Toptan, who provided

invaluable help throughout the duration of this dissertation and without whom I would

have been left unanswered on too many questions.

I would also like to thank my father, for reminding me to look after myself while working

on my studies, as well as all my other family and friends who were there to give me

advice, help me destress, and motivate me to push myself in completing this dissertation

to the best of my ability.

Contents

1 Introduction .. 8

1.1 Footsies, Neural Networks, and Ladder Anxiety ... 8

1.2 Project Aim, and Objectives .. 10

1.2.1 Project Aim ... 10

1.2.2 Project Objectives ... 10

1.3 Project Constraints ... 11

1.4 Log of Risks... 12

1.5 Project Deliverables ... 13

1.6 Project Approach ... 14

1.6.1 The Agile Project Management Methodology 14

1.7 Research Approach .. 15

1.7.1 Time Management .. 15

1.8 Legal, Ethical, Professional, and Social Issues ... 15

1.8.1 Legal ... 15

1.8.2 Ethical ... 16

1.8.3 Professional .. 16

1.8.4 Social .. 16

1.9 Summary .. 16

2 Literature Review ... 17

2.1 Introduction ... 17

2.2 Evaluation of Existing Solutions and Utilised Methods 17

2.3 Summary .. 21

3 The Artefact .. 22

3.1 Introduction ... 22

3.2 Requirement Specification .. 22

3.2.1 Must Have .. 22

3.2.2 Should Have ... 23

3.2.3 Could Have ... 23

CONTENTS UP2157533

5

3.2.4 Won’t Have ... 24

3.3 Summary .. 24

4 IT Design ... 25

4.1 Introduction ... 25

4.2 The Director ... 25

4.3 The Middleman.. 27

4.4 Pre-processing the Data ... 28

4.4.1 Parsing the Data .. 29

4.4.2 Normalisation ... 29

4.5 The Neural Network .. 33

4.6 Selection of API and Programming Language .. 34

4.7 Selection of Programming Language .. 34

4.8 Data Design ... 34

4.9 Feature Engineering ... 35

4.10 Model Architecture ... 36

4.11 Training Pipeline .. 36

4.12 Summary... 37

5 Development .. 39

5.1 Introduction ... 39

5.2 The Director ... 39

5.2.1 Function Implementation.. 39

5.2.2 Farming Training Data ... 40

5.3 The Middleman.. 41

5.3.1 The Footsies Client ... 41

5.3.2 The Python Server .. 43

5.3.3 Controlling the Client and Server ... 43

5.4 Pre-processing ... 44

5.4.1 Parsing the Data .. 44

5.4.2 Normalising the Data .. 47

5.5 The Neural Network .. 49

5.5.1 Sequence Generation .. 49

5.5.2 Model Creation ... 51

5.5.3 Main Method .. 52

CONTENTS UP2157533

6

5.6 Game Integration ... 52

5.6.1 The Predictor Class... 53

5.6.2 Pre-Processing Live Inputs ... 53

5.6.3 Predictions .. 54

5.6.4 The Director and The Middleman .. 55

5.7 GitHub Release .. 57

5.8 Summary .. 58

6 Testing .. 59

6.1 Introduction ... 59

6.2 Initial Model Results ... 60

6.3 Validation Metrics and Loss Functions ... 61

6.3.1 Weighted Binary Cross Entropy ... 61

6.3.2 F Score and Leniency ... 62

6.4 Hyperparameter Tuning ... 65

6.5 Feature Engineering ... 66

6.6 Choosing the Final Model ... 71

6.7 Final Model Ability ... 73

6.8 Summary .. 74

7 Evaluation ... 75

7.1 Introduction ... 75

7.2 Evaluation Against Requirements ... 75

7.3 Evaluation Against the Project Problem .. 76

7.4 Evaluation of the Agile PMM .. 76

7.5 Critiques... 77

8 Conclusion ... 78

8.1 Conclusions ... 78

8.2 Project Aim .. 78

8.3 Future Considerations .. 78

8.4 Final Reflection ... 79

9 Appendix A: Ethics Form .. 80

CONTENTS UP2157533

7

10 Appendix B: Gantt Chart .. 81

11 Appendix C: Project Initiation Document ... 82

12 Appendix D: Logs ... 90

13 Appendix E: Glossary .. 113

14 Bibliography .. 115

Chapter 1

Introduction

1.1 Footsies, Neural Networks, and Ladder Anxiety

“Footsies,” created by solo developer “HiFight,” is a simplistic 2D video game within

the “Fighting Game” genre. It simplifies the wider concepts found in the genre to their

basics and emphasises mastery of these fundamentals. The “Fighting Game” genre is

reputable for its competitiveness and competition between two individuals as well as its

visuals, which can either be presented in a realistic or fantasy manner (Hosch, 2024).

Throughout this paper, fighting game jargon will be used frequently. A glossary is

available at the end of this paper. “Footsies” operates with three buttons: two for

bidirectional movement and one for attacks. The attack button can be pressed for a normal

attack, or held for a special, and holding any direction while performing these attacks

results in an alternative normal/special, respectively. A special move can also be executed

by pressing attack during the animation of a normal move, provided the normal contacted

the enemy. Special attacks are the only attacks capable of knocking out the opponent.

Each character has three guard points, depletion of these removes a character’s ability to

block, causing a guard break instead, leaving the enemy open to a follow up. The game

loop generally consists of utilising normals and reacting to either a hit or a block and

performing a follow up special for a knockout (should your normal hit.) This emphasises

If I had more time, I would’ve written

a shorter letter

Blaise Pascal, (1657)

INTRODUCTION UP2157533

9

reactions as well as spacing: “whiffing” a normal (i.e. missing an attack) will leave the

player open to a punish attack and usually a knockout. First to three knockouts wins.

“Ladder Anxiety” is defined as the tendency to view competition in video games as

threatening, or intimidating, in turn causing a response of anxiety. “Ladder” here

referring to a commonly used system within video games that assigns an “Elo” to each

player, which increases when winning and decreases when losing (Zoet, 2017). This

anxiety can lead to increased heart rate, anxiousness, and increased levels of surface

electromyography (sEMG) activation which triggers increased masseter muscle

activation, which can lead to future cervical posture problems (Bueyes-Roiz et al., 2023).

Competition in individual sports athletes results in higher levels of anxiety/depression

than team sports athletes (Pluhar, 2019) which is why this problem becomes in regard to

the genre of “Fighting Games.”

This anxiety is common, in a study of twelve cyberathletes most experienced symptoms

of somatic anxiety (Whalen, 2013), which reinforces that this anxiety becomes more

prevalent the stronger the competition, and in turn how invested the player is. This

anxiety could cause players from any level to struggle enjoying the genre, which is the

key reason finding and implementing a solution is important.

The only alternative to real opponents are AI controlled opponents (colloquially called

CPUs) who usually operate with inhumane reaction times or input reading, allowing them

to manipulate the game state to give them an unfair edge (Liu, 2017), and more complex

AI that can surpass human-level performance without these tools have yet to be

developed and implemented in mainstream fighting games (Oh, 2022). These AI

opponents can feel noticeably inhumane which ultimately creates a divide in the feeling

of playing a human versus a computer.

Neural networks provide an alternative solution to these AI opponents. Neural networks

(NNs) are a machine learning tool that operate by distinguishing linearly separable

INTRODUCTION UP2157533

10

classifiers. NNs are comprised of “neurons,” inspired by biological neurons (Hardesty,

2017), that have different weighted signals. These signals control the output of the final

network, and the weights are adjusted during the training processes. Ultimately, NNs are

designed to emulate tasks, whether it be image recognition or medical diagnoses, hence

were a NN to learn to emulate a human playing a fighting game, it could provide an

alternative solution to players looking to enjoy a game without requiring interaction with

another person.

1.2 Project Aim, and Objectives

1.2.1 Project Aim

This project aims to solve the problem of ladder anxiety by providing alternative methods

of play for those who experience it. Through the use of neural networks, a more authentic

alternative to the existing methods can be created, one that can hopefully provide a

satisfactory experience and one more akin to competition against a real human. Solving

this problem not only allows the people who suffer from this anxiety to enjoy their

passion again but also opens doors for people who may be hesitant to engage in this genre

of games due to their pre-existing anxiety.

1.2.2 Project Objectives

The objectives of this project are laid out below.

 To create a software that achieves all the requirements laid out in the

specification.

 Carry out thorough research regarding any design choices taken as to ensure the

final artefact is sophisticated in its design.

 To publish videos documenting progress for the purpose of keeping the project

supervisor in the loop as well.

 Embody the agile project management methodology in both development cycle

and the feedback pipeline.

INTRODUCTION UP2157533

11

1.3 Project Constraints

Time is the only major constraint faced in this project. The timeframe for the project is

limited, and components of the project such as gathering training data as well as iterating

on the network could prove lengthy.

INTRODUCTION UP2157533

12

1.4 Log of Risks

Table 1.1 presents a log of all potential risks during the project development period.

Table 1.1: A log of all potential risks, their impacts, and mitigations

Risk Description Likelihood Impact Mitigation

Desktop/Laptop

Failure

PC failure –

unable to work

on home PC

Low Low Use University Provided PCs to

complete my work

Project

Schedule Risk

Project

elements take

unexpected

time to

complete

Medium Medium Reorganise my priorities to

ensure my project is complete.

Sacrifice other uses of my time.

Scope Creep Project scope

is lost and

objectives

become vague

Low Medium Constant check-ins with my

supervisor and realignment of

goals/standings

Communication

Failure

Objectives

aren’t

communicated

to my

supervisor;

project strays

from mark

scheme

Low High Constant check-ins with my

supervisor to ensure they know

what I am working on, what I

am aiming for, and what my

final deliverables will be

Loss of Code I lose project

code due to

corruption or

other

Low High Ensure my code follows the 3-

2-1 principle: three copies of

my code, two physical, one

cloud

INTRODUCTION UP2157533

13

indeterminate

factors

Unexpected

Workload

The videos

documenting

my progress

take too long

to produce and

are hindering

me

Medium Medium Videos will sacrifice visual

quality for quantity while still

maintaining relevancy

1.5 Project Deliverables

The list of deliverables for this artefact is as follows:

 Complete project source code

The source code for the entirety of this project, both the original source code for the

“Footsies” game, as well as any and all additional files created to operate the neural

network. This will be available in the form of an online repository via GitHub.

 “Read Me” file.

A “Read Me" file containing all necessary requirements (libraries, software) for the

project to run on any Windows device. This file should also operate as a user guide and

will be available as a text file in the GitHub repository for the project.

 Video Documentation Series

A link to a playlist containing the entirety of the video documentation series created and

uploaded to YouTube.

 Final Report

A PDF copy of this final report is to be available with the final delivery of this project.

INTRODUCTION UP2157533

14

1.6 Project Approach

1.6.1 The Agile Project Management Methodology

The Agile Project Management Methodology will be the chosen PMM for this project.

The Agile PMM prioritises collaboration, feedback, iteration and reiteration over

comprehensive documentation, planning, and sequential development: primary focuses

of methodologies such as the Waterfall PMM (Thesing, 2021).

The main advantage of the agile PMM is that iteration and reiteration are essential to the

development cycle of an AI model, as optimising features such as training data selection,

which can affect a model’s performance i.e. overfitting (Ying, 2019). Furthermore, with

the author of this project’s limited domain knowledge, predicting and then allotting

timeframes for components becomes an unreasonable task, and a PMM that supports

constant change and does not necessitate strict time limits is ideal.

Some core values according to the Agile PMM Manifesto (Beck, 2001) are laid below.

 Harnessing change throughout the entire development cycle

This principle highlights issue/error management: each iteration improving and

welcoming change in a project and adapting to its needs as opposed to bug-fixing during

downtime through the traditional SDLC.

 Working software is the primary measure of progress.

Measuring progress through deadlines and checklists can limit freedom and creativity, as

well as stump workflows. By using working software to measure progress through the

project, understanding where progress lies in relation to the completion of the project

becomes trivial.

 Simplicity in maximising the amount of work not done.

Ensuring key features are prioritised as opposed to following planned and potentially

misaligned bells and whistles maintains project progress and prevents straying from the

end post.

INTRODUCTION UP2157533

15

Using the Agile PMM to both constantly observe where the project stands in its

development as well as realign goals/deadlines as necessary can guarantee the artefact

will be complete for the final deadline.

1.7 Research Approach

Secondary research will be the main form of conducted research with decisions being

made according to deduced and induced conclusions of that research. Scholarly articles,

research papers, and academic journals will provide excellent sources of secondary

information, and due to research within the field (specifically implementing neural

networks into fighting games) being limited, other less academic sources will be

researched and cited e.g. YouTube. The researching process involves taking a source and

creating a list of key points, conclusions, and evaluations, before using these to inform

decision making.

1.7.1 Time Management

Regardless of the Agile PMM, some time management and plan adherence are required

for the project. This will be done via maintaining a Gantt chart with estimated timeframes

for completion of different components. However, weekly logs will be written depicting

project progress, and within these logs both realignment of component deadlines (i.e. the

Gantt chart) as well as week-by-week goals will be laid out. This allows for prioritising

completion of work as the Agile PMM purports, as well as ensuring that deadlines are

met, while maintaining some flexibility.

1.8 Legal, Ethical, Professional, and Social Issues

1.8.1 Legal

 Copyright infringement. Despite using a game created by an individual developer,

a beta version of the game is available online with all the source code public, so

this will be a non-issue.

 Usage of libraries and APIs developed by others may cause issues, however due

to the fact that no money will be made from this project, this should remain

unproblematic.

INTRODUCTION UP2157533

16

1.8.2 Ethical

 While AI has inherent ethical issues, the nature of this project as well as how data

such as training data will be gathered ensures no issues should arise.

 Should sufferers of ladder anxiety test the AI, choosing to/to not reveal the

opponent as an AI with the intention of gauging how “real” the opponent felt

could be an issue: this will be mitigated by simply not testing the AI against real

humans.

 Should the AI be tested online, online opponents not knowing their opponent is

an AI may be problematic. This can again be mitigated via the same method

outlined above.

1.8.3 Professional

 Preventing bias in the project, as strong domain knowledge of fighting games

could influence the design of the model negatively. Mitigation for this comes

inherently via the nature of neural networks and their effective inability to be

persuaded.

 Conflict of interest, where a specific vision for the model could be imagined, one

that more aligns with personal interests as opposed to the interest of the project.

By stating a project specification that clearly defines requirements that both

support personal and project interests, this problem can be mitigated.

1.8.4 Social

1. Although the documentation videos will be available online for viewers to see,

this should not spawn any social issues.

1.9 Summary

This chapter lays not only the groundwork of the project, but also the context, and

ensuring this context is prioritised during the project will only guarantee the final artefact

accomplishes all the declared aims and objectives.

Chapter 2

Literature Review

2.1 Introduction

The purpose of the literature review is to deepen the author’s domain knowledge of neural

networks. Research, however, within this field is limited, and academic sources

implementing neural networks into fighting games are scarce. Regardless, this literature

review will cover present and past existing solutions to the project problem, as well as

evaluate them for their efficacy to derive conclusions that can inform design decisions

now and later during project design and development. Not only will solutions be

evaluated for their efficacy in creating an AI model that is simultaneously human like

and capable of providing a good level of competition (features of the artefact that are

outlined in detail in the artefact specification) but will also discuss the different machine

learning techniques used to support the selection of neural network type for this artefact.

2.2 Evaluation of Existing Solutions and Utilised Methods

Feedforward and recurrent neural networks (NNs) are both discussed in the following

example AI agents, and so a brief overview of them is outlined below. Simply, unlike

feedforward NNs (Zell, 2019), recurrent NNs can store and remember data, with Long

Short-Term Memory (LSTM) cells (Hochreiter and Schmidhuber, 1997) specifically

being able to tackle the issue of gradient vanishing as the neural network grows

(Hochreiter, 1988). Additionally, considerations between supervised and reinforcement

learning approaches will be discussed. Supervised learning operates by training the

model on labelled pairs data sets: the actual data, and the expected result. The NN predicts

LITERATURE REVIEW UP2157533

18

an output and then uses the labelled data to compare errors and adjust its weights

accordingly (Mohri et al., 2012). Reinforcement learning defines certain actions as

desired and undesired via a reward function. And the network then repeatedly adjusts

itself to maximise the reward it achieves (Kaelbling et al., 1996).

The aim of this project is to create an AI model using neural networks that can both play

Footsies skilfully and in a manner that is human-like. Because of this, reinforcement

learning is unlikely to prove optimal, as supervised learning is effectively required to

influence the manner in which the model players, i.e. like a human. However,

reinforcement learning approaches will still be discussed in the following review.

An AI created for the 2016 multiplayer game Blade & Soul (B&S) used an LSTM NN

with a deep reinforcement learning approach implemented with a “self-play” curriculum

to create an AI that achieved a win rate of 62% against professional players. Furthermore,

at the 2018 World Championship, battled against professional players without revealing

itself as an AI (Oh et al., 2019), with the commentators present unable to determine that

the model, under the moniker “DES_KnightJ”, was in fact an AI, as shown in this footage

https://goo.gl/7VUTzV. This model was successful in providing an alternative method of

play (albeit as a proof of concept rather than a solution to ladder anxiety) and succeeded

in being both competitive and human like. The final artefact performing in a human-like

manner is incredibly pivotal to the overall solution; without feeling as if you are playing

a human, the solution will lack authenticity and will ultimately crumble. The B&S model

remaining undetected during blind matches is a feature that must be replicated in the final

solution and so influence from this solution must be considered. Although this seems a

strong advocation for reinforcement learning, in a talk held by the NCSOFT team (Chung

& Rho, 2019) it was revealed that one hundred simulations were trained simultaneously

on previous versions of itself, some of which had already been trained for several hundred

hours. This is echoed by Seijen (2011) who discusses that reinforcement learning models

are restricted in both time and space; something that is too constraining on this project.

Lack of training time could lead to poor results, something seen by Luo, (2019) in their

reinforcement-based AI model that was trained to play the fighting game “Mortal

https://goo.gl/7VUTzV

LITERATURE REVIEW UP2157533

19

Kombat,” using different reinforcement algorithms such as Proximal Policy Optimisation

(PPO). The final model was rudimentary, inhumane, and ultimately succumbed to a lack

of training time.

An AI agent created by Robison (2017) used a supervised learning approach in training

an AI for the FightingICE platform, a Java based fighting game used in AI development

competitions (Intelligent Computer Entertainment lab. Ritsumeikan University, 2024).

The AI model created was successfully able to emulate its training partner, although the

training partners used were AI, it stands to reason data collected by a human would lead

to a model that emulated a human, a hypothesis supported by Chaperot, (2006), who

implemented an artificial NN trained via human gameplay in a motocross game and

concluded that the adaptability of ANNs mean the model would retain human elements

in any situation. Despite the solution provided by Robison (2017) being efficient in its

emulation, it suffered from poor competitive ability with a win-rate of 20%, hypothesised

to be caused by the model’s training partners also serving as its opponents. Competitive

ability is important: the stronger the opponent, the more players can fight it, however

again, the AI feeling human is of much greater importance, and so supervised learning as

a means to ensuring proper emulation of human playstyle is a strong conclusion that can

be drawn from this solution.

Comparing the B&S AI to the AI created for FightingICE, the key difference is the use

of a LSTM recurrent neural network, versus the feedforward neural network used by the

FightingICE AI. While in the previous source discussed there was no evidence-backed

explanation for the poor win rate, the difference in performance between feedforward

networks and recurrent neural networks can be hypothesised to be the cause.

Furthermore, the use of a recurrent network also proved effective in successfully

providing a solution to the problem in “Neural Knight.” “Neural Knight” (Polyrogue

Games, 2019) is a recurrent neural network trained via supervised learning that was

taught to play the 3D fighting game For Honor. The model was able to achieve a modest

win rate of approximately 25% and pass a “Turing Test” (Hodges, 2010) of sorts, albeit

with a small sample size, that determined the majority of individuals (both novice and

LITERATURE REVIEW UP2157533

20

advanced players) could not identify the human in a set of 4 clips, 3 being played by the

AI and the final being the human. This solution is almost ideal, with the model being

both competitive (albeit at a novice level) and human like. The only caveat would be the

strength of the model; however, this was mostly due to extremely limited training data:

only 2 hours of training data was gathered and used.

“MariFlow” is a LSTM recurrent neural network created by the online personality

“Sethbling” that was taught to play Super Mario Kart using a supervised learning

approach (Sethbling, 2017). The goal of the neural network at any given point in time

was to predict the optimal output. The training data used to reinforce these predictions

was hours of gameplay that Sethbling had recorded of himself playing, which was

supplemented by interactive training sessions in which the neural network and himself

passed control back and forth, a method used before to increase efficiency in image

labelling neural networks (Längkvist et al., 2016). The final result was an AI that was

skilful and human like, all achieved within a reasonable timeframe.

The ability of the models within “Neural Knight” and “MariFlow” to completely emulate

human play via the use of supervised learning advocates strongly to implement this

method of learning to the artefact, as it aligns exactly with the project specification.

It is impossible to determine at this stage in the project with the author’s current domain

knowledge and experience the optimal solution based on both the desired outcomes

specified in the artefact specification and the constraints of time and resources that are

being faced. However, considering the research performed a supervised learning

approach was determined as the best course of action, supplemented by an LSTM

recurrent neural network. The choice for an LSTM network specifically being due to the

better performing solutions (in this project’s specific use case) also using LSTM

networks, as well the importance of the network being able to remember previous

information to develop pattern recognition (Cho et al., 2007) and in turn emulate the style

in which humans approach fighting games. These choices were being made specifically

LITERATURE REVIEW UP2157533

21

due to the displayed efficacy of these methods in creating an AI that is both effective, and

human like.

2.3 Summary

Ultimately through systematic review it can be shown that neural networks have vast

applications within both the genre of fighting games and the wider gaming sphere, albeit

with scarce research. It is clear that utilisation of neural networks could create a better

solution to the existing project problem, should only the discussed implementations be

applied with an emphasis on combatting human anxiety, which is exactly the primary

goal of this artefact.

Chapter 3

The Artefact

3.1 Introduction

Existing solutions to the project problem ubiquitously fail in one aspect: they feel

distinctly robotic. CPU opponents in fighting games are often pre-scripted

(Lueangrueangroj and Kotrajaras, 2009) and use techniques such as input reading (Liu,

2017) to gain an advantage and even the playing field against human opponents. For the

solution to be successful, it must provide an alternative to these existing CPU opponents,

and so the requirement specification will be defined with the biggest priority in ensuring

the model plays in a human manner.

3.2 Requirement Specification

3.2.1 Must Have

1. The final artefact must be able to run on any Windows OS device and should

therefore contain:

a. A user guide that includes requirements and operation instructions.

b. An executable that can be run to operate the artefact.

The final artefact being a downloadable and playable game serves the purpose of

generating feedback post this project’s completion that can lead to both improvements to

the specific model as well as wider feedback regarding AI models in fighting games. The

purpose of this project is to solve a problem, and a solution that cannot be used is not a

valid solution.

THE ARTEFACT UP2157533

23

2. The source code should consist of:

a. A “director” that can extract data from the game as it runs to be fed to the

“middleman.”

b. A “middleman” that can take data from the director and pass them to the

neural network, and vice-versa.

c. The neural network, which can take game state information and process

the optimum output.

Splitting the workload and working on each component individually while continuously

monitoring progress and readjusting deadlines is the core of the Agile PMM, and

designating three different “parts” of the software allows flexibility in managing the

workload.

3. The final agent should play in a human like manner.

Ultimately, the aim of this software is to be a lifelike AI that players who suffer from

social anxiety can play. Were the AI not lifelike, it will struggle, say, to “scratch the same

itch” that playing a real player does.

3.2.2 Should Have

1. The final agent should play in a manner deemed “strong” or “skilful.”

The higher level of play the agent can attain, the wider the range of players who would

be challenged by it becomes, allowing the solution to be viable for a larger array of the

project problem’s target. However, this artefact aims to simply show how a neural

network can be implemented to solve the problem, and so the maximising of the solution

area is not mandatory.

3.2.3 Could Have

1. Operational instructions to allow users to generate their own training data.

Allowing for end users to gather training data would have the benefit of allowing the

agent to grow stronger as well as be more capable against diverse play styles. While not

mandatory, the priority of a requirement such as this would be much greater were this

project to be commercialised.

2. Operation instructions to allow users to create/recreate agents.

THE ARTEFACT UP2157533

24

Creation of multiple agents in conjunction with the previous requirement of allowing

users to generate their own training data would result in a software that would allow any

user to train and create a network model to emulate their own playstyle. Implementing

this however would require efficient training techniques to ensure that masses of training

data would not be required, to ensure a pleasant user experience.

3.2.4 Won’t Have

1. Dynamic player selection: allowing the end user to choose a preferred player (one

or two) with the network controlling the other.

With how the network learns and trains, i.e. emulation of a specific player via prediction

of their inputs, the creation of two models (one for each player) proves too large a task

for the available timeframe.

3.3 Summary

The end goal of this project is to create an AI agent of a competent skill level that plays

in a way a human would, that can be used as an alternative to online play for those who

suffer from ladder anxiety. This specification has been created with that core idea in mind.

Chapter 4

IT Design

4.1 Introduction

With respect to the specification, design decisions needed to be considered for the

following components:

2. The “director”

3. The neural network

4. The “middleman”

The director would pass data to the middleman, which would pass data into the network,

and the process would be reversed to return the output of the network to the director.

While these three components were core to the software, there were other components to

be designed. Specifically, the data pre-processing pipeline, and these components will

also be discussed in this section.

4.2 The Director

The first component to be designed was the training data extraction component, or the

“director.” Gathering training data would prove the lengthiest task of the project,

therefore it was pivotal data extraction functions were completed first.

Within Footsies, a “Fighter” class controls both characters and instance variables within

the class handled information such as position, current action, and guard health.

IT DESIGN UP2157533

26

“BattleCore.cs” held all frame-to-frame operations. Hence it was decided within this file,

code responsible for extracting data would be implemented.

There were three decisions to handle in designing this component:

 What information should be extracted?

 How should it be extracted?

 How often should it be extracted?

What data would be extracted was a point of contention, however discussions with the

project supervisor and moderator influenced the final decision: that is, everything would

be extracted. Determining the best selection of data that the NN would benefit from was

an impossible task at this stage, and so extracting all data would allow for flexibility

during future testing and improving of the model. All public information available on the

screen was exported. The list of exported features is as follows:

 currentInput

 position

 velocity_x

 isDead

 vitalHealth

 guardHealth

 currentActionID

 currentActionFrame

 currentActionFrameCount

 isAlwaysCancelable

 currentActionHitCount

 currentHitStunFrame

 isInHitStun

 isAlwaysCancelable

The following variables, those relative to both the player one and player two character,

would be extracted. Note the presence of “currentInput.” This variable represented the

IT DESIGN UP2157533

27

current button presses of a given player. While this was not public information, it needed

to be extracted; during training, the NN makes predictions on what it believes the best

input for the player is at a given moment, and without the true value of the player’s input

to compare, the NN would not be able to learn.

How and how often the data would be extracted were trivial considerations. Each frame,

the current value of each of these variables would be appended to a list, and at the end of

a round in which player one is victorious, the variables would be output into a text file,

separated by their relative frame counts. Ultimately, the network, which would be trained

via supervised learning, has no concept of winning or losing; it simply emulates the

training data. Therefore to get the model to win, it must learn off of wins.

4.3 The Middleman

The “middleman” component of the artefact would handle communication between

Footsies, operating in C#, and the neural network, operating in Python. After reaching

out to the project supervisor and Portsmouth alumni, a WebSockets client-server pairing

was determined the ideal choice.

WebSockets is a communication protocol that allows for bidirectional message exchange

between a server and a client. It operates quickly and seamlessly and is supported by any

device with a standard web browser (Mozilla, 2019). The two main reasons WebSockets

were chosen are as follows:

 Speed

WebSockets allow for sufficiently fast data transmission speeds, as game information

would need to be sent at every frame, and with the game running at sixty frames per

second, quick message exchanging was necessary.

IT DESIGN UP2157533

28

 Simplicity

The chosen method of communication needed to be simple to implement due to

unfamiliarity in the field as well as time management; spending too much time on inter-

process communication was simply not an option.

With the means of communication established, the middleman component required

design of the following methods:

 A method that can be called by the director to pass live game state information to

the middleman.

 Method(s) to feed data into the neural network and return an output.

 Method(s) to initialise and deactivate connection between the Footsies client and

Python server.

The method to pass data to the middleman was partly complete: the director would

already provide a function that extracted data from the game, all that was left to

implement would be a function that passed this data to the server. This function would

simply live inside “BattleCore.cs” and be called in place of the function that outputs the

training data. A queue was deemed necessary to feed data into the network. The

middleman would take live game data from the director and append it to a queue, which

would then be dequeued as they were passed to the WebSocket client. A queue ensured

no consistency issues would arise. Returning the output from the network however would

also happen in an analogous way, taking the output from the network, but passing it to

the Python server, which would then return it to the client. The method to initialise

connection would live inside “GameManager.cs;” the file that handled launching the

game. With this, any errors in the Python server would be raised immediately during

launch. Deactivating the server however would happen internally: if the server detected

the client had shut down, then the server would terminate itself.

4.4 Pre-processing the Data

Arguably more important than the network itself is the pre-processing. The data needed

to be normalised to allow for the network to utilise it effectively, and although data had

been collected, it first needed to be parsed from the text files it was stored in to allow for

IT DESIGN UP2157533

29

pre-processing to occur. Efficiently pre-processing training data was pivotal for the

training process, with effective pre-processing showing an increase in classification

accuracy of 95% in a neural network trained on data pre-processed using methods such

as Min-Max Normalisation, Z-Score Normalisation, and Decimal Scaling Normalisation

(Mohd et al., 2013). The structure of the data pulled from the source code of the game

would determine which normalisation method would be selected. The source code

revealed that the relevant data, all stored in variables, had varying structure including

binary values, serial numbers, and Boolean values. Ergo, it was decided that

considerations for each variable were essential and ensuring proper normalisation for

each would be pivotal to the final efficacy of the model.

4.4.1 Parsing the Data

Pandas is an open-source library designed to create and manipulate easy to read data

structures for the Python programming language. Specifically, the Pandas “DataFrame”

class allows for the creation of a two-dimensional data structure that both allows for easy

processing as well as loading by the TensorFlow API. Using built in Python RegEx

module, efficient loading and parsing of each training data file could take place,

appending the results to a Pandas DataFrame. The parsing module would be written in

Python and would:

 Parse through all training data files within a specified directory.

 Create a Pandas DataFrame class object to hold all the data.

 Save this object for later reading.

All of these requirements could be achieved using the RegEx and Pandas libraries. By

simply opening each file and parsing each line for the extracted variables, a list could be

created with all values that could easily be appended to a Pandas DataFrame object.

4.4.2 Normalisation

Each variable stored in the training data must be normalised. The challenge comes in the

variance of data types: the training data consisted of discrete integers, continuous floats,

Boolean values, and bitmasks. The following is a breakdown of each variable and its data

type, as well as how it would be normalised.

IT DESIGN UP2157533

30

 currentInput

“currentInput” is an integer variable that is responsible for determining the button presses

of a player at any given point in time. The range of this variable is 0 to 6 inclusive, and

upon further analysis appeared to be a bitmask that converts the binary output of the three

individual buttons (left, right, and attack) into a single integer. Using the Python server

to provide live feedback, with an update to the message sending function the integer-

button mapping was retrieved and is shown in Table 4.1.

Table 4.1: The bitmap for the current player input

C A R L

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

With this knowledge, bitwise operations could be applied to the parsed integer to convert

the single variable back into the three individual binary toggles for each button. Doing

this allows the network to see exactly what button(s) is being pressed at any given frame.

 position

There are two key things to note about the “position” variable: firstly, since there is no

vertical movement in this game, although the Y position of the fighters was grabbed

during data extraction, it can simply be dropped during the parsing progress. Secondly,

the range of this variable is a float, and normalisation of this would be simple. The

standard formula for min-max normalisation could be used, as seen in (1), which would

translate the position to a number from range 0 to 1.

IT DESIGN UP2157533

31

𝒙′ =

𝒙 −𝐦𝐢𝐧⁡(𝒙)

𝐦𝐚𝐱(𝒙) −𝐦𝐢𝐧⁡(𝒙)

(1)

It was important to note however that the values observed for “min(x)” and “max(x)”

would need to be stored. During testing and playing, the network needed to be able to

scale the position value by the same factor used to normalise the training data, otherwise

the position observed by the network could be inaccurate.

 isDead, isAlwaysCancelable, isInHitStun

These three variables would all require the same normalisation process, and it was simply

to translate the Boolean flags to a binary representation, 1 and 0 for True and False,

respectively.

 velocity_x

The “velocity_x” variable is used by the game to translate a fighter’s position in instances

where they are propelled as opposed to controlled, such as when knocked back by a blow

or using an attack with forward movement. This value isn’t entirely continuous, although

the values ranged from -3 to 7, there were only approximately ten values the variable

could take. Regardless, the same normalisation process would be used as the “position”

variable (standard min-max normalisation)

 vitalHealth

“vitalHealth” served the same function as “isDead;” that being when a fighter’s health

was zero, they were dead. Because of this, the variable would be dropped during

preprocessing to avoid overwhelming the network.

 guardHealth

IT DESIGN UP2157533

32

“guardHealth” is a discrete integer from range zero to three, and represented the amount

of guard points a fighter had remaining. Despite being discrete, minmax normalisation

as if it were continuous was deemed optimal. This was because although it was discrete,

the guard points did not represent different states and were simply a count of how much

guard a fighter had left and so treating them as a continuous variable from 0 to 1 would

allow the network to understand the meaning of this variable.

 currentActionID

This was a discrete integer variable that took on different values according to the current

action the fighter was performing. Clearly because of this, it could not be treated as a

continuous variable, yet it still needed to be normalised due to the variable taking values

such as 300, 101, and 500. “One-hot” is the name of a group of bits of which only one

bit is ever “1”, while the others remain zero. The purpose of this is to allow for a simple

state representation of categorical data, which is exactly what “currentActionID” was.

Using one-hot encoding, the “currentActionID” variable could be split into multiple

indicator variables that could tell the network the current state of a fighter. Fortunately,

the Pandas API makes this trivial, using the “pandas.get_dummies” method, which

allows for easy conversions of categorical data. During this stage of the product, it was

found within the source code that an ID map defining each move was included and is

shown below in Figure 4.1.

IT DESIGN UP2157533

33

public enum CommonActionID

{

 STAND = 0,

 FORWARD = 1,

 BACKWARD = 2,

 DASH_FORWARD = 10,

 DASH_BACKWARD = 11,

 N_ATTACK = 100,

 B_ATTACK = 105,

 N_SPECIAL = 110,

 B_SPECIAL = 115,

 DAMAGE = 200,

 GUARD_M = 301,

 GUARD_STAND = 305,

 GUARD_CROUCH = 306,

 GUARD_BREAK = 310,

 GUARD_PROXIMITY = 350,

 DEAD = 500,

 WIN = 510,

}

Figure 4.1: The action to ID mapping used by Footsies

 currentActionFrame, currentActionFrameCount, currentActionHitCount,

currentHitStunFrame

Upon exploring the Footsies source code, it was learnt that these four variables have no

bearing on the game state and are in fact used solely by the game to draw the fighter

sprites. Because of this, these three variables would be dropped during parsing.

With it decided how each variable would be normalised, it was now apparent how the

neural network would see the data, and so designing the network began.

4.5 The Neural Network

Before development of the neural network could begin, values for hyperparameters of

the network needed to be researched and considered. The following is a breakdown of

the immediate design considerations that needed to be made to commence development

of the network.

IT DESIGN UP2157533

34

4.6 Selection of API and Programming Language

The selected API for developing the neural network was the TensorFlow Keras

Functional API. TensorFlow is a well-known API that supports easy implementations of

neural network models while allowing for further scalability, and specifically the Keras

Functional API for its ability to support more flexible deep learning models (Keras Team,

2019). A 2019 paper that compared multiple Python libraries for machine learning

concluded that TensorFlow was the ideal library for deep learning, commenting on its

extensive documentation and features such as local GPU acceleration (Stančin & Jović,

2019), with another 2022 paper praising TensorFlow for its Datasets module which

provided an easy way to train the network on data and create new abstractions during

runtime (Novac et al., 2022).

4.7 Selection of Programming Language

Python was chosen to be the programming language the model will be created in. This is

due to the project author’s experience with the language being high, as well as mitigating

unnecessary stress on time constraints that come from learning a new language.

Furthermore, once the TensorFlow Keras API had been selected, it was important to

choose a language which supported the API, which Python does.

4.8 Data Design

The nature of the data being used for training is time series data, where a time series is a

chronological sequence of observations on a variable of interest (Montgomery et al.,

2016). Because of this, determining the optimal sequence length, i.e. the number of inputs

that should be fed as a sequence to the network, is most important. Determining this

optimal sequence length, or in other words defining the Optimal Starting Point (OSP) of

a sequence as described by Zhong et al. (2025), is a both important and sometimes

disregarded part of time series forecasting. Choosing where to begin each sequence and

ensuring that only relevant contextual information is contained within the sequence is

crucial to the performance of the network. Fortunately, in this instance the time series is

relatively consistent, and although some rounds vary mildly in length, there are no abrupt

changes that could be misinterpreted by the network given any OSP. However, a sequence

IT DESIGN UP2157533

35

too short can derive the network of context, and too long could overwhelm the network.

For these reasons, it was determined the sequence length of the data being fed into the

network would be twenty frames long. This number would however be tested in search

for a more optimal number once the network was created. Next was splitting the data into

separate rounds. This could be done simply with the Pandas library using the “group_by”

method. Splitting the data into rounds, those rounds can then be split into sequences of

size 20 (as justified above) before being fed into the network for training. Each round

acts as a mini dataset, with every sequence taken from a round being tested for the target

output. Aligning inputs and targets is simple. The current button presses for player one

would be dropped from the dataset and used as targets, and everything else used as an

input.

4.9 Feature Engineering

Feature engineering is an important part of the machine learning process. The

performance of a model can depend heavily on how data is represented, and feature

engineering is a way to capitalise on domain expertise to compensate for Machine

Learning (ML) models’ inherent weakness, i.e. their inability to extract and organise

valuable information from a dataset (Bengio et al., 2014). Feature selection is the process

of building more comprehensive datasets and prioritising important variables to reduce

noise in the network (Li et al., 2017), which T. Kavzoglu and Mather (2002) explain can

cause overfitting and introduce poorer generalisation capability. Because of this, it’s

important to select only necessary features to train the network. There are two techniques

to optimise feature selection with the first of which being domain expertise. The author

of this project being an avid Fighting Game expert and professional player meant that

there is prior understanding of the importance of different variables. The second of which

being statistical methods such as feature evaluation criterion, search procedures, and

model selection strategies (Leray and Gallinari, 1999). Another important consideration

to make was feature derivation, which is the process of manually creating new features

(Liu et al., 2020). The disclosure of features such as the relative distance between players

or whether a player is approaching or not could positively affect training speeds and

network accuracy. Primarily, only the features discussed in the design of the

IT DESIGN UP2157533

36

normalisation methods would be used, and during later testing the above two techniques

would be employed to optimise the network.

4.10 Model Architecture

A sequential model was the obvious choice as not only is it the simplest, it fits the

required structure of the network, i.e. a stack of layers that feed into three outputs (button

presses). It was important to start simple and optimise layer sizes and counts later;

François Chollet (2021) recommends sixty-four units when working with a large number

of features (46 classes in his case) and using an LSTM layer. The unit size 64 LSTM

layer would be supplemented with a dense layer of thirty-two units, and an output layer

which would consist of a size three dense layer, one for each output, with a sigmoid

activation function. The sigmoid activation function allows for each output to have an

independent probability while returning a 1 or 0 for a predicted button, pressed or

unpressed. The loss function is used to determine how well or poorly a model is

performing by calculating the accuracy of a model’s predictions compared to the real

target labels. Due to the use of a sigmoid activation function for the three outputs, binary

cross entropy was chosen as the loss function. Binary cross-entropy is used to measure

the difference between predicted binary outcomes and actual binary labels, where the

output of a cross-entropy function is a probability between 0 and 1, and the loss increases

as the prediction strays from the actual label (Ruby and Yendapalli, 2020).

 𝑳𝒐𝒔𝒔 = −[𝒚 ⋅ 𝒍𝒐𝒈(𝒚^) + (𝟏 − 𝒚) ⋅ 𝒍𝒐𝒈(𝟏 − 𝒚^)] (2)

The above, (2), is the formula for the loss calculation, where y is the actual label and y^

is the predicted probability. The closer these two values are, the lower the loss.

4.11 Training Pipeline

The first task to handle would be splitting the data. To create the model, a training,

validation, and testing set would be required. The training data set would be used for

weight adjustment with the validation set used during the training process to tune

parameters such as model structure and loss/accuracy, and the test set is used at the very

IT DESIGN UP2157533

37

end to determine the final accuracy of the model. A standard split of 70%/15%/15% was

decided upon. From the training data, the rounds would need to be extracted before being

sequenced and fed into the network. This could be performed easily using built in

methods from the Pandas API.

Training the network involved defining certain hyperparameters. These were:

 Sequence length

 Epochs

 Batch size

 Learning rate

The sequence length was already determined to be twenty. Epochs simply refers to the

amount of passes the network will do over the training data, and a standard number of

ten would be used. The batch size would be the number of sequences fed into the network

at once, this is again something that could be tuned during training, hence sixty-four

would be selected for now and potentially changed later. Next was the learning rate,

which would be set to 0.001, which was the default for the chosen optimiser, “Adam”.

“Adam” stands for Adaptive Moment Estimation and is the standard optimiser for Keras

sequential networks. The optimiser controls how weights are adjusted given the current

loss function and using Adam as the optimiser would not change during development.

Lastly came monitoring metrics and saving model checkpoints. Metrics are displayed

automatically while training via the Keras “model.fit()” function, however model saving

needed to be explicitly written in the code. A model could be saved at each epoch if the

value being monitored is at a new best. The most common values to be monitored are the

loss and accuracy, however it was clear immediately that loss would be the variable to

monitor. Simply put, the network’s predictions don’t need to match 100%, they only need

to be close to the true label, so monitoring this would be ideal.

4.12 Summary

The three core components of the artefact had been designed. With this, development

could operate smoothly, however with the project author’s limited subject domain, it’s

IT DESIGN UP2157533

38

possible and likely that some considerations had been forgotten, so the following section

will cover both development and any design changes that arose.

Chapter 5

Development

5.1 Introduction

This section covers the development of all components designed in the previous chapter

as well as the solving of any problems that arose during development.

5.2 The Director

Extracting training data from rounds needed to be completed perfectly: any issues within

the final training dataset could be detrimental during network training. Because of this,

try/catch statements were implemented liberally where required, as to ensure any errors

would be raised and fixed promptly.

5.2.1 Function Implementation

The function implementation for the previously discussed extraction of training data was

simple. The “UpdateFightState” in “BattleCore.cs” called once each frame, handling

game operations. In this function, shown in Figure 5.1, a simple frame timestamp was

added, as well as a string variable which would add the player one/two label, the name

of the variable, and the current state of the variable for all variables to be extracted. This

string was then copied with its associated frame number to another variable which would

contain all the frames up until that point, and the final output would be exported to a text

file at round end, determined by the “UpdateEndState” function.

DEVELOPMENT UP2157533

40

// increments the current frame (effectively a timecode)

currentFrameCount++;

// appends data to trainingData string

newGameState = currentFrameCount + ": " +

"P1_INFO:" +

"currentInput(" + p1Input.input +

")position" + fighter1.position +

"velocity_x(" + fighter1.velocity_x +

")isDead(" + fighter1.isDead +

")vitalHealth(" + fighter1.vitalHealth +

")guardHealth(" + fighter1.guardHealth +

")currentActionID(" + fighter1.currentActionID +

")currentActionFrame(" + fighter1.currentActionFrame +

")currentActionFrameCount(" + fighter1.currentActionFrameCount +

")isAlwaysCancelable(" + fighter1.isAlwaysCancelable +

")currentActionHitCount(" + fighter1.currentActionHitCount +

")currentHitStunFrame(" + fighter1.currentHitStunFrame +

")isInHitStun(" + fighter1.isInHitStun +

")isAlwaysCancelable(" + fighter1.isAlwaysCancelable +

")"

...

trainingData += newGameState;

Figure 5.1: Exporting data in “BattleCore.cs”

Note: Within the “Fighter” class, it was necessary to make the variable that determines

whether the round was a victory public, as to be able to use it to identify round victories

and hence only extract training data on a win. To conclude, try/catch statements were

implemented around all data extraction code and some test games were run. Data files

were being output into the correct location, and although the files appeared visually

convoluted, they contained all necessary information that could be used later.

Furthermore, this function could be easily modified to instead pass game state

information to the middleman as opposed to outputting a training file.

5.2.2 Farming Training Data

Collecting training data involved playing the game against the existing Footsies AI, and

eventually, two sets of training data were collected. The explanation for this segmentation

was that the existing Footsies AI was “bad.” The AI operated randomly, queueing

DEVELOPMENT UP2157533

41

different move sequences haphazardly, which meant although training data could be

collected without issue, many rounds ended abruptly with the AI instantly whiffing a

special move, only to be punished and lose. Training the model to punish mistakes as a

human would do was vital, however with the frequency of these mistakes, variety in the

data would suffer. To combat this, minor modifications were made to the existing AI.

Any instance of executing a random special had its probability reduced by 50%. This led

to longer rounds that provided varied game states and was ultimately the AI used to

construct the second training dataset. In conclusion, approximately 1300 training data

files were gathered over approximately 15 hours. The quantity was low, however no more

could be gathered in the time allotted to farming training data.

5.3 The Middleman

Next was the middleman. This section covers the implementation of a WebSockets client

and server that would provide a means of communication between Footsies and the

network.

5.3.1 The Footsies Client

The client required a main method to establish the client, and two methods to send and

receive messages. The built in C# WebSockets API made implementing these simple,

however an issue arose. Initially, the first iteration of the send/receive methods used a

while loop to constantly monitor messages ready to send/ready to receive. This code is

seen below in Figure 5.2 and was ultimately scrapped. With this code, upon launching

the game and initialising the server, the thread on which the client was running would

block the game as the client repeatedly checked for messages to be sent and received.

This was due to not running the code asynchronously and instead hogging the main thread

preventing the game from running.

DEVELOPMENT UP2157533

42

while (client.State == WebSocketState.Open)

 {

 UnityEngine.Debug.Log("Dequeueing message...");

 string message = BattleCore.messageQueue.Dequeue();

 // the message is encoded into UTF8 before being sent

 byte[] messageBytes = Encoding.UTF8.GetBytes(message);

 await client.SendAsync(new ArraySegment<byte>(messageBytes),

 WebSocketMessageType.Text,

 true,

 CancellationToken.None);

 }

Figure 5.2: The blocking message handling method

To fix this, the code was made to run asynchronously, and to do so two new variables

were introduced (see Figure 5.3).

public static readonly ConcurrentQueue<string> messageQueue = new();

public static readonly SemaphoreSlim messageAvailable = new(0);

Figure 5.3: The asynchronous variables for handling the message queue

The “ConcurrentQueue<type>” class is built on the standard “Queue” abstract data type.

The core difference between the two is that “ConcurrentQueue<type>” is designed for

when a queue must be accessed from multiple threads, as it comes with built-in thread

safety and synchronisation. This allows for the game to access the queue and append

items to it, while the WebSocket client can simultaneously dequeue elements as it sends

them to the server. ”SemaphoreSlim” is used similarly; the semaphore has a maximum

count of one and is released by the game once a message is ready to be sent, with the

client holding the semaphore only to send a message. With the use of these two variables,

the message exchange methods were split into two separate methods, one for receiving

and one for sending, and were able to run asynchronously with the game and in a non-

blocking manner. These methods were then both called by the main method which

initialised the client and began asynchronous running of the two methods.

DEVELOPMENT UP2157533

43

5.3.2 The Python Server

To implement the Python server, the “asyncio” and “websockets” packages were

installed, with them, a function for message handling and server initialisation were

created. The message handler function, shown in Figure 5.4, would wait asynchronously

for messages, and upon receiving one, could process the message before returning the

output.

message handler for connected clients

async def message_handler(websocket):

 try:

 # this block is where message recieving and processing happens

 async for message in websocket:

 print(f"Received message: {message}")

 await websocket.send(f"Server received: {message}")

 # exception handling

 except Exception as e:

 print(f"Error: {e}.\nConnection closed. Press enter to terminate

server.")

 input()

 control_server(0)

 finally:

 print("Connection closed. Press enter to terminate server.")

 input()

 control_server(0)

Figure 5.4: The Python server-side message handling

Asynchronous message handling was a requirement, as to avoid similar errors with the

Footsies client. The server is terminated upon any error or if the client shuts down.

5.3.3 Controlling the Client and Server

A method to initialise server/client and a method to update the message queue were

required, and they would be called by the director. Initialising the server/client was done

by calling the main method of the client and running the “server.py” file using the C#

“Systems. Diagnostics” library. Figure 5.5 shows the “UpdateMessageQueue” method

DEVELOPMENT UP2157533

44

implemented in the “BattleCore.cs” file: which could be called in place of the training

data output function.

public void UpdateMessageQueue(string message)

{

 messageQueue.Enqueue($"Sending message {message} at frame {cur-

rentFrameCount}");

 messageAvailable.Release();

}

Figure 5.5: The director-called function for updating the message queue

5.4 Pre-processing

The penultimate component was the pre-processing pipeline, including the parsing and

normalising of data. This pipeline would be split into two files, one for parsing, and one

for normalising.

5.4.1 Parsing the Data

The development of the parsing module required three main components:

 A main function that can be called to parse all the data.

 A component that can parse the dataset and create a DataFrame.

 An auxiliary function that can extract data from a csv.

The first component to be completed was the data parser. Pulling the files from the

training data set was mostly trivial, and using the built in Python OS library, the current

directory was grabbed before attaching the path of the dataset to parse (see Figure 5.6).

dataset_name = r"TrainingData\DATASET#2-NEW_AI"

dataset_path = os.path.join(os.path.dirname(os.path.dirname(__file__)),

dataset_name)

Figure 5.6: Retrieving directory path using the built-in OS library

At this stage it was also decided every round would be stored in one large DataFrame,

with a column to identify different rounds. This was because Pandas DataFrame objects

are designed for large operations, and multiple objects would slow down the parsing.

DEVELOPMENT UP2157533

45

With the files pulled from the directory, next came parsing data from them. The Python

RegEx “search” function takes a pattern and data before returning all matches found in

the data inside a “match” object, which contained separate groups, the value of any

indexed group being the match found at that index. A “pattern” defines a specific string

to locate within the search argument, and a pattern could be easily defined with each line

of the training data (see Figure 5.7) having a consistent structure.

43:P1_INFO:currentInput(2)position(1.96,0.00)velocity_x(0)...P2_INFO:current

Input(5)position(1.50,0.00)velocity_x(2)...isDead(False)

Figure 5.7: An example line of training data

pattern = r"currentInput\((\d+)\)" + \

 r"position\(([-\d.]+), 0.00\)" + \

 r"velocity_x\(([-\d.]+)\)" + \

 r"isDead\((True|False)\)" + \

 r"guardHealth\((\d+)\)" + \

 r"currentActionID\((\d+)\)" + \

 r"isAlwaysCancelable\((True|False)\)" + \

 r"isInHitStun\((True|False)\)"

Figure 5.8: Search pattern for parsing

Each line within the pattern (see Figure 5.8) defines a different match. A brief outline of

each RegEx character used in the pattern above is displayed in Table 5.1.

DEVELOPMENT UP2157533

46

Table 5.1: Brief breakdown of utilised Python RegEx characters

Character Definition

/ Used to escape a character

() Used to identify a group

[] Everything within these can be matched

d A digit range [0, 9]

r Defines a string as raw

+ Must match one or more

- Negative symbol

| Or

This pattern was used to identify the eight variables for each player, as well as a simpler

pattern to identify the respective frame number of the line. For a total of seventeen total

matches. These matches were returned to the parent method, which was responsible for

enumerating the dataset, calling the parse function for each line. The matches were

grouped into a list with the other lines of the file and returned to the parent method,

combining the enumeration counter with the list of parsed data. The final output would

be a single list composed of every frame of every file, parsed, and associated to a round.

This array could then easily be transformed into a Pandas DataFrame using NumPy and

saved using built-in Pandas methods (see Figure 5.9).

DEVELOPMENT UP2157533

47

def create_dataframe(data):

 # converts the data from a python list to a numpy list

 npData = np.asarray(data)

 extractedData = pd.DataFrame(

 data= npData,

 columns=columnList)

 # extracts the data to a CSV for viewing

 extractedData.to_csv(os.path.join(os.path.dirname(__file__),

'out.csv'))

Figure 5.9: Creating a DataFrame using extracted data and predefined column list

5.4.2 Normalising the Data

The normalising process was simple to implement. Using the procedures laid out in the

design section, the data, which could be read from the “csv” file created by the parser,

was operated on column by column until everything was normalised. The most

challenging implementation was the bitwise operations to convert “currentInput” into

three distinct binary representations of buttons pressed. Two methods, shown in Figure

5.10, which were built into the NumPy library were used.

bitwise_and(arg_1, arg_2)

right_shift(arg_1, arg_2)

Figure 5.10: NumPy bitwise operations for bitwise mask decomposition

“bitwise_and” computes the bitwise AND of two arguments. Taking “arg_1” as the bit

we want to determine is pressed or not, “1” can be used in place of “arg_2”, which would

return a result of one if the button is pressed and zero if unpressed. “right_shift” takes an

integer for both arguments, “arg_1” represents the integer to be bit shifted, and ”arg_two”

is the number of bits to shift. Since the integer representing the buttons pressed had a

range of 0-7 inclusive, the variable could be operated on as three binary digits. As shown

in Table 5.2, the bit responsible for each button press was consistent, and using the two

methods outlined above, the exact state of each bit could be determined.

DEVELOPMENT UP2157533

48

Table 5.2: The bitmap for the current player input

C A R L

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

Calculating which bit represented which button was simple using the above table. The

first bit is responsible for the “L” button, the second for “R,” and the third for “A,”

representing left, right, and attack, respectively. It was important to not confuse the order

of the bits, as this could lead to the normalising of the data swapping all instances of a

left button pressed with an attack button, and vice versa. With this information and the

aforementioned bitwise operations, three new DataFrame columns were generated for

each button press, using the operations to label any pressed button with “1”, and

unpressed with “0”.

With the hardest of the normalisations out of the way, all other columns were normalised

with ease. The Pandas library provides methods for one-hot encoding and replacing

Boolean values with integers, and the minmax normalisation formula was employed

when necessary. A small albeit important method, “saveConfig()” method was also

constructed. During normalisation, maximum and minimum values for position and

velocity were taken from the data, and it was important these values remained consistent

during testing as to ensure the network operates on the same scale on which it was trained.

These values could all be saved within a Json file that could be accessed later (see Figure

5.11).

DEVELOPMENT UP2157533

49

config.update({

 "P2maxPosition":p2max_pos,

 "P2minPosition":p2min_pos,

 "P1maxPosition":p1max_pos,

 "P1minPosition":p1min_pos,

 "P2maxVelocity":p2max_vel,

 "P2minVelocity":p2min_vel,

 "P1maxVelocity":p1max_vel,

 "P1minVelocity":p1min_vel

})

def saveConfig(config):

 try:

 open("networkConfig.json", "r")

 except Exception:

 open("networkConfig.json", "a+")

 with open("networkConfig.json", "r+") as configFile:

 json.dump(config, configFile)

Figure 5.11: Saving a Json config file with observed minimum and maximum values

Lastly, all pre-normalised columns were dropped, which was a necessary step as most

methods of normalisation did not drop the preexisting columns.

5.5 The Neural Network

With the data parsed and pre-processed and the middleman working, the next logical step

was to create the network.

5.5.1 Sequence Generation

The first step was developing a function that would sequence the data so it could be fed

into the network. As stated in the design section, a sequence length of twenty would work

as a starting point, however it was essential to keep this number malleable, as later testing

could find twenty to be too low/high. The proposed method would take a DataFrame

object, a desired sequence length, and a sequence step as arguments before generating as

many sequences as the data size permitted. The sequence step was left an argument to

allow flexibility in determining the overlap between the sequences, although the initial

DEVELOPMENT UP2157533

50

step used would be one. Rounds were grouped by ID: ensuring rounds remained discrete

prevented bleeding between sequences. Once grouped and sorted by frame, a loop could

iterate over the data and grab features and targets within the defined sequence size, adding

each to a list. The features were defined as any column that was not a target column,

meaning approximately forty-five columns would be used as features and three as targets:

the player one left, right, and attack button presses. The final method is shown below in

Figure 5.12.

the _ is for roundID, while not accessed, its here to make sure se-

quences

dont bleed into other rounds

for _, roundData in df.groupby("round_ID"):

 # this skips rounds that are too short, which is impossible rn, but

 # if i ever make seqL larger then could be relevant

 if len(roundData) < seqL:

 continue

 # sorts the round by frame number

 roundData = roundData.sort_values(by="frame_number")

 # loops the round data in range length round data to sequence length,

 # + 1 to account for range exclusiveness

 # the step here is 1, this creates a sliding window

 for i in range(0, len(roundData) - seqL + 1, step):

 # this grabs all the data apart from the targets, or only the

 # targets

 # .iloc simply grabs data at an index or index range, specifying

 # the column to grab from

 sequence = roundData.iloc[i:i+seqL].drop(columns=targetColumns)

 target = roundData.iloc[i:i+seqL][targetColumns]

 # this pulls the values from the iloc methods.

 sequences.append(sequence.values)

 targets.append(target.values)

Figure 5.12: The main body of the create sequences method

Before generation of sequences could begin however, training data needed to be split into

three sets, those being training data, validation data, and test data as stated in the design

DEVELOPMENT UP2157533

51

section. Splitting this data is done simply using the SciKit-Learn API, via the

“train_test_split” function (see Figure 5.13).

X_train_raw, X_temp, y_train_raw, y_temp = train_test_split(X, y,

test_size=0.3, random_state=17)

split the what was 30 percent remaining into 50/50

X_val_raw, X_test_raw, y_val_raw, y_test_raw = train_test_split(X_temp,

y_temp, test_size=0.5, random_state=17)

Figure 5.13: Splitting the data into training, validation, and testing sets

With the data split, sequences could be generated for each set, and used appropriately to

train, validate, and test the model later.

5.5.2 Model Creation

The TensorFlow Keras Functional API provides incredibly simplistic creation of neural

network models, and with the model architecture already designed, implementing it was

simple and is shown below in Figure 5.14.

sequential model, 1 input, 1 output, 2 hidden layers

LSTM layer with 64 units, dense with 32, and dense with 3

last dense layer is output layer w sigmoid function

model = Sequential()

model.add(Input(shape=inputShape))

model.add(LSTM(64, return_sequences=True))

model.add(Dense(32, activation='relu'))

model.add(Dense(3, activation='sigmoid'))

compiling model with adam, binary cross-entropy, and accuracy metric

model.compile(optimizer=Adam(),

 loss='binary_crossentropy',

 metrics=['accuracy'])

return model

Figure 5.14: Creating the network model

Each hyperparameter specified in the previous design section could be adjusted easily,

which not only allowed for quick implementation but also allowed for straightforward

testing later. Once built, the model was compiled using Adam, binary cross-entropy, and

DEVELOPMENT UP2157533

52

accuracy metrics before being returned. This function would be called by a parent method

to create the model before training and saving it.

Note: A dropout layer with a value of 0.5 was appended to the model after the first LSTM

layer and before the first dense layer. The reasoning for this was that the model was

relatively complex, and out of fear of the model overfitting, a dropout layer was included

to help combat this.

5.5.3 Main Method

Within the main method, the creation of sequences and building of the model could be

called. It was here model checkpoints could be defined. Model checkpoints (as shown in

Figure 5.15) allow for the saving of a model at preferred training intervals. Here, the

validation loss is monitored, and for each epoch should a new minimum be achieved, the

model is saved and if necessary overwritten with the improved model.

inputShape = (X_train_seq.shape[1], X_train_seq.shape[2])

model = buildModel(inputShape=inputShape)

checkpoint = ModelCheckpoint("FootsiesNeuralNetwork.keras",

 save_best_only=True,

 monitor="val_loss",

 mode="min",

 verbose=1)

Figure 5.15: Model checkpointing

With the model created and data processed, the only thing left was to train and evaluate

the model, and with that, the network was created. The immediate results of the network

however were disappointing and will be shown and discussed in Chapter 6.

5.6 Game Integration

The final component to be developed was a class that could host the model and handle

pre-processing, sequence generation, and predictions given live game state information

from the director.

DEVELOPMENT UP2157533

53

5.6.1 The Predictor Class

The first step was to define the class that would handle all game prediction, the creation

of which is shown in Figure 5.16.

class FootsiesPredictor():

 def __init__(self, modelPath, sequenceLength, features):

 self.model = load_model(modelPath)

 self.seqL = sequenceLength

 self.features = features

 self.buffer = []

Figure 5.16: The predictor class

With the class created as such, variable model paths, sequence lengths, and feature counts

could be passed into any new instance. This would ease later testing, as these values were

likely to be tinkered with. Note the instance buffer list; this would hold pre-processed

frames from the middleman until enough were stored to generate a single sequence.

5.6.2 Pre-Processing Live Inputs

A non-trivial issue arose during the next step of creating a method to pre-process live

data. The existing pre-processing and normalisation code only worked on full datasets,

as opposed to single lines. The cause of this was two reasons, firstly, the existing

normalisation code would only assign new values for minmax normalisation, as opposed

to reading the config. Secondly, the normalisation code would pull data from a csv, as

opposed to straight from the parsing code. This created a type mismatch which would

raise errors at every step of normalisation. The solution to this was the refactoring of the

pre-processing and normalisation files into a single class, “DataPreprocessor.” Within

it, the same parsing method was copied, and the normalisation method was split into three

methods; “normalise,” “normaliseLiveInput,” and “normaliseDataset.” This distinction

allowed for proper config reading/writing while also eliminating the need to copy the

DataFrame to a csv, passing it directly from the parser to the normaliser, ensuring the

normaliser would always work with data passed from the parser. Now, live data passed

from the middleman could be pre-processed without issue before being added to the

buffer. This buffer would act as an instance of the sequences generated during training.

Since the network was trained on fixed length sequences, it could only predict an output

DEVELOPMENT UP2157533

54

if it were given the same length sequence. Should the buffer be larger than the sequence

length, the oldest frame could be popped, maintaining the correct sequence length.

5.6.3 Predictions

Once the buffer was full the prediction could be called. The prediction method was trivial

to implement. A simple check was used to ensure that the buffer was of correct size, and

if the check returned true, the buffer was reshaped into an input of size (1,

sequenceLength, featureCount). This was then fed into the model which would return a

list of three floats, each float equal to the predicted probability a button would be pressed.

Converting this list of floats into an input integer for the game was done by first

converting the floats into binary integers using a threshold, 0.5 in this instance. The list

of now binary integers was reversed and transformed into a string. The reversing of the

list was incredibly important. During training, the network was fed target outputs in the

order “Left, Right, Attack,” and as covered earlier during the normalisation process, it

was determined that these three outputs were equal to the first, second, and third bits,

respectively. Because of this, to ensure the correct binary integer was created, the list was

reversed to ensure that the bit order accurately matched the button order. The final

conversion process is shown below in Figure 5.17.

DEVELOPMENT UP2157533

55

rearrange buffer

currentSequence = np.array(self.buffer, dtype=np.float32).reshape(

 (1, self.seqL, self.features))

create prediction with model

prediction = self.model(currentSequence)[0, -1]

threshold = 0.5 # input threshold

converts list of floats into binary, then into int

binOutput = [

 1 if value >= threshold else 0 for value in predic-

tion.numpy().tolist()]

binString = ''.join(str(bit) for bit in binOutput[::-1])

finalOutput = int(binString, 2)

Figure 5.17: The prediction conversion into an integer that could be used as an input

Once the string binary integer was created, it was as simple as converting this string into

a binary type, then back into an integer, leaving the final result as the current input

predicted by the network.

The final thing of note: currently, the predictor was set to predict only every fourth frame.

This was due to prediction time averaging approximately 20ms. Since Footsies runs at

60fps, each frame allows 16ms of leeway to complete operations, and so predicting every

frame caused the network to fall behind, however, this frequency could be tinkered with

during testing.

5.6.4 The Director and The Middleman

The last step was to tie this network class into the middleman and director. Within the

middleman’s message handler, a created instance of the “FootsiesPredictor” could be

used to prepare live data and return predictions (see Figure 5.18).

DEVELOPMENT UP2157533

56

async for message in websocket:

 start = time.perf_counter()

 footsiesAI.prepareData(message)

 print(f"PrepareData: {(time.perf_counter() - start)*1000:.2f}ms")

 start = time.perf_counter()

 output = footsiesAI.predict()

 print(f"Predict: {(time.perf_counter() - start)*1000:.2f}ms")

 await websocket.send(str(output))

Figure 5.18: Message/Prediction handling via the middleman Python server

Lastly, a new variable in “BattleCore.cs” was created that held the current input of the

network, which the Footsies WebSocket client could easily update upon receiving a

message from the Python server and director could use to modify the player one input.

DEVELOPMENT UP2157533

57

With game integration complete, a flowchart was created to show director, middleman,

and network components, and is seen below in Figure 5.19.

5.7 GitHub Release

While the official GitHub release would have to wait until the completion of the testing

section, the release process was studied to ensure a smooth launch when the time came.

Simply building the game via the Unity editor would create a directory with all necessary

files, bar the Python code, which was simply moved manually post build. The build was

tested on multiple devices, with only a few bugs relating mainly to directory paths and

performance issues. Fixes for these were simple, simply refactoring the code to ensure

Figure 5.19: The final structure of the director, middleman, and network

DEVELOPMENT UP2157533

58

all directories are grabbed relative to the running file, and regarding performance;

TensorFlow can be CPU intensive, and the fix for this was to introduce a sliding window

for prediction intervals, that calculated the average time of the last three predictions and

set the intervals to match that.

5.8 Summary

The project at this stage was “complete.” Meaning every component was functional and

operational. The game could be played by the network without issue, which left only

testing and improving of the model to be completed, which would be a necessity

considering the disappointing initial performance of the network.

Chapter 6

Testing

6.1 Introduction

With the current efficacy of the model, rigorous testing to ensure the quality of the model

could be improved was necessary to achieve the must have requirements of the artefact.

Three distinct elements of the project could be iterated on, those being the

hyperparameters of the network, the features used to train the network, and the structure

of the parsed data. This chapter covers the experiments taken on the aforementioned three

elements with the primary aim of improving the efficacy of the model.

TESTING UP2157533

60

6.2 Initial Model Results

It was important to establish a baseline to allow for comparisons during the testing

process. After training the model on the data, the final accuracy and loss of the model

could be observed, as well as the training loss and validation loss during the training

process.

As shown in Figure 6.1, training loss was decreasing while validation loss was slowly

but steadily increasing. This was a symptom of the model overfitting, i.e. it was

memorising the training data as opposed to learning to generalise. It is also important to

note that this model was only trained for five epochs. This was due to use of an “early

stopping” callback during model training; a simple callback that halts training of the

network should the value of a specified variable (e.g. validation loss) not improve within

a set number of epochs.

Figure 6.1: A graph showing training and validation loss per epoch

TESTING UP2157533

61

The accuracy and loss of the model is shown below in Table 6.1.

Table 6.1: The accuracy and loss of the first model

Metric Value

Loss 0.2028

Accuracy 0.6559

6.3 Validation Metrics and Loss Functions

Currently, binary cross entropy was being used to determine the loss, and the validation

loss of the model was being monitored to rank the model. However, these methods can

perform poorly on imbalanced datasets (datasets were the ratio of ones to zeroes is large)

and using the normalised dataset to find a ratio of negative samples to positive samples,

the imbalance could be observed, as seen in Table 6.2.

Table 6.2: The observed imbalance of negative to positive samples

Button Ratio of negative/positive samples

Left 2.92

Right 2.16

Attack 5.53

With this imbalance, it becomes clear that a weighted cross entropy function would be

required to train the model, as well as some form of weighted metric for model ranking.

6.3.1 Weighted Binary Cross Entropy

Rezaei-Dastjerdehei et al. (2020) showed that weighted binary cross-entropy was able to

increase recall by approximately 10%, while precision does not decrease more than 3%

relative to regular binary cross-entropy. The TensorFlow library does not provide a built

in weighted cross entropy loss function, however implementation of this was trivial, and

TESTING UP2157533

62

is shown in Figure 6.2. Class weights would have to be passed to the function, however

defining these were as simple as calculating the ratio of zeroes to ones within the target

classes.

def weightedBinaryCrossentropy(classWeights):

 """

 returns a custom loss function with class specific weights.

 """

 classWeights = tf.constant(classWeights, dtype=tf.float32)

 def loss_fn(y_true, y_pred):

 # clip predictions to avoid log(0)

 y_pred = tf.clip_by_value(y_pred, 1e-7, 1 - 1e-7)

 # apply the binary cross entropy formula with the weights

 bce = -(classWeights * y_true * tf.math.log(y_pred) +

 (1 - y_true) * tf.math.log(1 - y_pred))

 return tf.reduce_mean(bce) # average over batch and classes

 return loss_fn

Figure 6.2: The weighted binary cross-entropy function

The formula for the weighted binary cross-entropy was applied and is shown below in

(3).

 𝑳𝒐𝒔𝒔 = −[𝒘 ⋅ 𝒚 ⋅ 𝒍𝒐𝒈(𝒚^) + (𝟏 − 𝒚) ⋅ 𝒍𝒐𝒈(𝟏 − 𝒚^)] (3)

The weighted binary cross-entropy function would be applied during model training from

now on as a better representation of the true loss of the model.

6.3.2 F Score and Leniency

The “F Score” of a model is used to monitor the efficacy of a model and is defined as the

harmonic mean of precision and recall (Taha & Hanbury, 2015). It is calculated as a

function of the precision (4) and recall (5) of a model, and the formula is seen in (6).

TESTING UP2157533

63

𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = ⁡

𝑻𝑷

𝑻𝑷 + 𝑭𝑷

(4)

𝒓𝒆𝒄𝒂𝒍𝒍 = ⁡

𝑻𝑷

𝑻𝑷 + 𝑭𝑵

(5)

𝑭 = ⁡𝟐

𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏⁡ ∙ 𝒓𝒆𝒄𝒂𝒍𝒍

𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝒓𝒆𝒄𝒂𝒍𝒍
= ⁡

𝟐𝑻𝑷

𝟐𝑻𝑷 + 𝑭𝑷 + 𝑭𝑵

(6)

TP and FP represent true and false positives respectively, with FP and FN representing

false positives and false negatives. Using F Score as a ranking metric would be a better

representation of the efficacy of a model, as F Score accounts for the distribution of

samples and class imbalance by including false positives and false negatives in its

formula.

This could be implemented in a similar fashion to the custom loss function. While F

Score is not supported by the TensorFlow API, a custom metric can be defined by

inheriting the “tensorflow.keras.metrics.Metric” class.

TESTING UP2157533

64

@keras.saving.register_keras_serializable()

class F1Score(Metric):

 def __init__(self, num_classes=3, name='strict_f1_score', **kwargs):

 super().__init__(name=name, **kwargs)

 self.num_classes = num_classes

 self.tp = self.add_weight(name='tp', initializer='zeros')

 self.fp = self.add_weight(name='fp', initializer='zeros')

 self.fn = self.add_weight(name='fn', initializer='zeros')

Figure 6.3: Implementation of the F Score metric

With the updated ranking metric and loss function, a new model was trained to serve as

the baseline, and the results of which are shown in Figure 6.4 and Table 6.3.

Figure 6.4: The training/validation loss per epoch with the new loss function

TESTING UP2157533

65

Table 6.3: The accuracy, loss, and F Score of the new model

Metric Value

Loss 0.4460

Accuracy

F Score

0.6932

0.7740

The validation loss curve showed a sharper increase in validation loss this time around,

meaning the model was still overfitting. Ultimately, the network trained with pseudo-

random initialised weights, so minor differences would be present, such as the large spike

and dip in validation loss. However, this would not affect the overall efficacy of the

model: a good model will have a low validation loss regardless of the random initialised

weights. Not too much could be deduced from the loss per epoch, as for example the

increase in loss relative to the previous model could be explained by the new loss

function.

It was important to note however that the accuracy was slightly higher, increasing by

approximately 5%. This increase was determined to be insubstantial, with the predicted

cause being the random adjustments of the initial weights.

With a new baseline established and values for loss, accuracy, and F Score determined,

any improvements to the model could be compared with this baseline to evaluate any

adjustments made.

6.4 Hyperparameter Tuning

Ultimately, the best way to tune the hyperparameters was to brute force test all

permutations of parameters and evaluate the resulting models. Six hyperparameters were

chosen to be experimented on, and a Python script was written to create Json

configuration files that stored all values of that permutation/experiment. The

hyperparameters that would be modified are laid out below with their respective list of

permutations in Table 6.4.

TESTING UP2157533

66

Table 6.4: The hyperparameters that would be experimented with

Hyperparameter List of Values

LSTM Layer Size 32, 64

Dense Layer Size 16, 32

Dropout Rate 0.1, 0.3, 0.5

Batch Size 32, 64

Sequence Length 10, 20, 50

Sequence Step 1, 2

The justification for these values was simple: the model was overfitting, effectively

meaning it was too complex, and these changes aimed to mostly reduce complexity,

forcing the model to learn to generalise.

The existing code to create a model was simply duplicated and refactored to iterate

through the list of generated configurations and create a new model with the desired

hyperparameters. Sequences were only regenerated in instances where the sequence

length or step differed. While the regeneration of sequences will cause some natural

deviation in the results, these deviations will be inconsequential to the efficacy of a given

model.

With this testing framework established, once the feature engineering (laid out in the next

chapter, Chapter 6.5) had been complete, tests could be run to determine the optimal

hyperparameter configuration.

6.5 Feature Engineering

At present, the current features in the dataset may not be optimal for teaching the network

recurring patterns in the data, and features needed to be either tweaked or new features

be derived from others. Using the author of this project’s domain knowledge, a list of

features was generated which encompass elements a human could observe and derive

TESTING UP2157533

67

upon looking at the game state. Since the network’s goal was to emulate human play, it

was important to ensure all features could be reasonably interpreted by a human, to

ensure the model had no innate computer-aided advantages. The list of features was the

following:

 Relative distance between fighters.

 In enemy threat range.

 Is cornered.

 Enemy is in range and in a punishable state.

 Enemy is guarding.

 Frame advantage.

This list was not comprehensive, and unfortunately due to time constraints (which will

be discussed further in Chapters 7 and 8) optimising this list further could not be

accomplished.

Generating these features was mostly trivial. Using the established middleman system,

position values were pulled from the game to define features such as whether a fighter

was in threat range (calculated by comparing the fighters’ positions to their attack ranges,

shown in Figure 6.4) or whether a fighter was close to the edge of the screen (a Boolean

value that would flag true when a fighter was in the bottom percentile of the screen

space). Using the existing pre-processing code, these new features were derived and used

to normalise a new dataset, which could be used for experimentation.

TESTING UP2157533

68

df["P1_n_attack_punish"] = (

 (df["distance"] >= 2.34) &

 (df["distance"] <= 3.18) &

 (df["P2_currentActionID"] == 105)

).astype(int) | (

 (df["distance"] >= 2.54) &

 (df["distance"] <= 3.38) &

 (df["P2_currentActionID"] == 100)

).astype(int)

df["P1_b_attack_punish"] = (

 (df["distance"] >= 2.34) &

 (df["distance"] <= 3.0) &

 (df["P2_currentActionID"] == 105)

).astype(int) | (

 (df["distance"] >= 2.54) &

 (df["distance"] <= 3.20) &

 (df["P2_currentActionID"] == 100)

).astype(int)

Figure 6.4: Calculating whether a fighter is punishable via attack ranges

With the features derived, the next step was determining whether or not they were

relevant to the network. Currently, the network was overfitting, meaning that the model

was likely too complex, so as opposed to adding these features outright experiments

would be performed comparing the existing features to the new features to determine the

relevancy of the new derived features.

To determine the relevancy of features derived and pre-existing, a function was created.

The function would evaluate the importance of different permutations of the model by

taking a trained model, iterating upon each feature, and shuffling the values, before then

evaluating the model’s F Score delta with the shuffled feature. By making each feature

essentially redundant and then evaluating the model, a better understanding of the

relevancy of each feature could be observed.

TESTING UP2157533

69

So, with the new features existing in the dataset, a model was trained, and the features

were evaluated for their importance. The updated model’s validation loss can be seen

below in Figure 6.5.

As shown, the model was still overfitting. This was expected behaviour, as simply adding

more features would only encourage the model to specialise and result in a hindered

ability to generalise patterns. Below in Figure 6.6 is the importance of each feature.

Figure 6.5: The validation/training loss of the model with the new features

TESTING UP2157533

70

The results of this were very surprising. It showed that the movement of the player one

character had a disproportionate effect on the final prediction. This was likely due to the

movement columns being the most diverse, as the player character moves more than

anything during a round. What was also surprising was the almost completely redundant

player two features: the model was disproportionately weighting the importance of the

player one data more than the player two data. This was induced to likely be the result of

the network only needing to predict what player one was doing at any given time.

All observations made were then used to modify the data set, and the following changes

were made to all features:

 Removal of unimportant/unsubstantial columns (where delta F Score was less

than 0.01).

 Combining of partly synonymous columns for both players (e.g. columns

responsible for blocking/attacking).

Figure 6.7 shows the new F Score deltas for each column.

Figure 6.6: A bar chart showing the effect on F Score of each feature

TESTING UP2157533

71

The chart clearly shows a better spread of feature importance, however the columns

responsible for player one’s forward (left) movement were still incredibly

overrepresented. The solution to this would likely be modifying the dataset to include

more instances where the player was not moving/performing other actions. However due

to the time constraints of this project, there was simply no time to optimise the dataset in

this manner, and again, this will be discussed in detail in Chapters 7 and 8.

Ultimately, it was this configuration of features that would be used in training the final

model.

6.6 Choosing the Final Model

The last step before evaluating the final model, was to select a final model. Chapter 6.4

describes the testing framework that would be used for this, and with the dataset

optimised as well as time would permit, experiments were run to determine the best

network architecture to use as the final model. The testing framework was run, and all

144 configurations were implemented and tested over approximately 5 hours. In

Figure 6.7: Updated permutation importance after feature engineering

TESTING UP2157533

72

conclusion, the model with the highest F Score on the validation data was experiment

106, the configuration of which is shown below in Figure 6.8.

{

 "experiment_name": "exp_106",

 "model": {

 "LSTM_unit_size": 32,

 "dense_unit_size": 16,

 "dropout_rate": 0.3

 },

 "training": {

 "batch_size": 64,

 "sequence_length": 30,

 "step": 1

 }

}

Figure 6.8: Configuration file of experiment 106

Now while experiments 103 and 141 had the highest validation accuracy and lowest

validation loss respectively, these metrics can be misleading for a model trained on

imbalanced dataset. A model can achieve high accuracy in, for example, a multi-

classification task where most targets present “0” by simply always predicting zero.

With the best configuration decided, the final model was trained, and the results are

shown below in Table 6.5. This final model was then bundled into the project before

being published as a GitHub release, shown in Figure 6.9.

Table 6.5: The accuracy, loss, and F Score of the new model

Metric Value

Loss 0.4334

Accuracy

F Score

0.6628

0.7778

TESTING UP2157533

73

6.7 Final Model Ability

With the project released and the artefact effectively “complete,” a simulation was run to

evaluate the abilities of the model. One hundred rounds were played pitting the model

against the existing CPU, and the results of which are shown below in Table 6.6.

Table 6.6: Results of one hundred games played between the model and existing CPU

Fighter Victories

AI Model 11

Existing CPU 89

The AI model was unsuccessful in achieving a strong win-rate against the existing CPU,

reaching only a rate of 11%. Furthermore, while there was no specific metric to evaluate

a model’s ability to emulate human playstyle, observing the model made it clear that the

strategies it employed were not only incredibly rudimentary but also, evaluated with the

project author’s domain knowledge, distinctly robotic. Evaluation of this model against

the specifications would be discussed in Chapters 7 and 8, although it was clear that the

model proved an unsuccessful solution to the project problem.

Figure 6.9: The final GitHub release of the project.

TESTING UP2157533

74

6.8 Summary

In summary, the testing of the model was largely unsuccessful in creating a meaningful

increase in model efficacy. Specifically, dataset manipulation and feature engineering

were unsuspectingly large tasks and should have had more time dedicated to them.

Management of the established time constraints and their effect on the final efficacy of

the model will be discussed further in Chapters 7 & 8.

Chapter 7

Evaluation

7.1 Introduction

This section is dedicated to the evaluation of the final artefact, both in its value as a

solution to the established project problem, and its success in meeting the specification

requirements.

7.2 Evaluation Against Requirements

Each requirement was deemed “met” should this report outline sufficient evidence of

meeting said requirement. Table 7.1 below shows an evaluation of each must have (MH),

should have (SH), and could have (CH) requirement and whether or not they were met.

Table 7.1: An evaluation of each requirement and whether they were met or not

Requirement Status Evidence

MH1 Met 5.7, 6.6

MH2

MH3

Met

Not Met

5.6

N/A

SH1 Not Met N/A

CH1 Not Met N/A

CH2

WH1

Not Met

Not Met

N/A

N/A

EVALUATION UP2157533

76

Requirements MH3 and SH1 both pertain to the in-game ability of the model, being able

to play like a human and play in a skilful manner, respectively. As discussed in Chapter

6.7, the model was both weak in comparison to the existing CPU, and distinctly robotic

(despite the absence of a discrete measurement of human ability emulation). The cause

of this being an insubstantial amount of time dedicated to manipulating the dataset to

allow the neural network to better observe patterns and generalise. While

hyperparameters and features were iterated on and optimised, it was hypothesised that

the dataset produced was too limited and too unintelligible for the neural network to learn

via. This mismanagement of time ultimately comes from the project author’s lack of pre-

existing knowledge within the machine learning field, hence a severe underestimation of

the importance of “good” data.

Due to the time constraints and testing crunch that arose in the final weeks leading up to

the project deadline, there was too little time to implement both of the “Could Have”

requirements.

7.3 Evaluation Against the Project Problem

The aim of this project was to create an alternative method of play to the existing solution

of CPU opponents in fighting games for those suffering from “Ladder Anxiety.” With the

in-game ability and mannerisms of the final model as discussed in Chapter 6.7, it is clear

that this solution does not succeed in solving the project problem.

7.4 Evaluation of the Agile PMM

Any time management issues did not arise from the Agile PMM, conversely, this project

management methodology allowed for adaptation and manipulation of deadlines to solve

the time management issues that arose during this project. Specifically, the method of

keeping weekly logs and constantly reevaluating where the artefact stood in its

completion ensured that despite facing issues with deadlines, they could always be

adapted to and mitigated as much as possible.

EVALUATION UP2157533

77

7.5 Critiques

While the primary and inarguably most important critique of the artefact is its inability

to solve the discussed project problem, another relatively minor critique is the

performance of the model from a technical standpoint. TensorFlow model predictions

require vastly different calculation times depending on physical hardware, and with most

time being spent attempting to improve the model, optimising the model for lower-end

devices could not be done.

Another critique is the literature review section of this project being potentially subpar

(i.e. being short and not comprehensive in its evaluations). The justification for this is the

incredibly niche field this artefact aimed to operate within; implementing neural

networks in fighting games is a topic seldom covered in academic research, and with

such scarce discussion, it proved a challenge to find sources that were current, critical,

and relevant. Some sources which were both relevant and critical were used despite

potentially being considered outdated, however these sources mainly address well-

established ideas and concepts that remain relevant and unchanged within the machine

learning field.

Chapter 8

Conclusion

8.1 Conclusions

8.2 Project Aim

As discussed in Chapter 7.3, this artefact was unable to provide a solution to the existing

project problem therefore deeming the primary project aim unaccomplished. The

reasoning for this was simply the project author’s lack of domain knowledge which

materialised itself in not understanding/prioritising collection of data high in quantity and

quality, as well as likely too much time spent studying neural network implementation

methods, which ultimately proved much simpler than predicted using the TensorFlow

library.

8.3 Future Considerations

Despite this artefact’s shortcomings, all future considerations revolve entirely around

improving the efficacy of the model. The best way to accomplish this is more data, and

better data management. Collecting much larger amounts of data (e.g. 10’000 rounds

compared to this project’s 1’300) would likely lead to a huge improvement of the model,

let alone the optimisations to be made within cleaning the data itself. Furthermore,

implementing the model in a more efficient way, one that does not depend heavily on the

end-user’s hardware, could open the door to commercial applications where models can

be implemented into existing games with the purpose of providing a real solution to the

project problem on a larger scale.

EVALUATION UP2157533

79

8.4 Final Reflection

To conclude this project, I can confidently say that despite being extremely disappointed

in the abilities of the final artefact, I am incredibly satisfied with the knowledge and

experienced gained along my journey. This dissertation gave me a chance to study

machine learning and neural networks, learn about the project development and

management process, and also give me an opportunity to write academically again, a task

I had missed dearly. Being able to evaluate research within the field also opened my eyes

to the seemingly limitless potential of neural networks and helped further sharpen my

analytical and critical thinking skills. I am incredibly happy and grateful for the

opportunity to create an engineering project such as this, and I can definitively say I will

be returning to this project in the near future.

Appendix A: Ethics Form

Appendix B: Gantt Chart

Appendix C: Project Initiation

Document

APPENDIX C: PROJECT INITIATION DOCUMENT UP2157533

83

APPENDIX C: PROJECT INITIATION DOCUMENT UP2157533

84

APPENDIX C: PROJECT INITIATION DOCUMENT UP2157533

85

APPENDIX C: PROJECT INITIATION DOCUMENT UP2157533

86

APPENDIX C: PROJECT INITIATION DOCUMENT UP2157533

87

APPENDIX C: PROJECT INITIATION DOCUMENT UP2157533

88

APPENDIX C: PROJECT INITIATION DOCUMENT UP2157533

89

Appendix D: Logs

APPENDIX D: LOGS UP2157533

91

APPENDIX D: LOGS UP2157533

92

APPENDIX D: LOGS UP2157533

93

APPENDIX D: LOGS UP2157533

94

APPENDIX D: LOGS UP2157533

95

APPENDIX D: LOGS UP2157533

96

APPENDIX D: LOGS UP2157533

97

APPENDIX D: LOGS UP2157533

98

APPENDIX D: LOGS UP2157533

99

APPENDIX D: LOGS UP2157533

100

APPENDIX D: LOGS UP2157533

101

APPENDIX D: LOGS UP2157533

102

APPENDIX D: LOGS UP2157533

103

APPENDIX D: LOGS UP2157533

104

APPENDIX D: LOGS UP2157533

105

APPENDIX D: LOGS UP2157533

106

APPENDIX D: LOGS UP2157533

107

APPENDIX D: LOGS UP2157533

108

APPENDIX D: LOGS UP2157533

109

APPENDIX D: LOGS UP2157533

110

APPENDIX D: LOGS UP2157533

111

APPENDIX D: LOGS UP2157533

112

Appendix E: Glossary

Blade & Soul – An MMO RPG genre video game, with a combat system influenced by

fighting games.

CPU Opponents – AI opponents.

Fighting Game – A genre of video game that primarily revolves around player versus

player combat, games within this genre can have realistic visuals and design philosophies

(For Honor, Virtua Fighter), or have more cartoonish/fantasy elements (Granblue Fantasy

Versus, Street Fighter)

FightingICE – FightingICE is a 2D fighting game used in the Fighting Game AI

Competition (FTGAIC), an international competition that competes for the performance

of fighting game AI certified by Computational Intelligence and Games (CIG).

Footsies – A barebones fighting game that emphasises and highlights the midrange

combat seen in many fighting games. Created and developed by internet user “HiFight.”

For Honor – For Honor is a Multiplayer Online Battle Arena (MOBA) action game

developed by Ubisoft that contains a combat system which while vastly different to a

traditional 2D fighting game, contains a lot of the same principles and strategy of a

fighting game.

Game Loop – A “game loop” also known as a “gameplay loop” describes the repeatable

actions a player takes that define the flow and experience of the game.

Guard Break – A state in which a player is unable to block, and any attacks that would

normally be blocked leave the player in a vulnerable state, usually opening them up to a

follow up attack.

Hit Confirm – Also referred to colloquially as “confirming,” a “hit confirm” describes

the process of using an attack, and upon reacting to the attack hitting, engaging in a follow

up; one usually unsafe were the move to not hit (i.e. be blocked).

Ladder Anxiety – A feeling of anxiety stemming from the knowledge you are

competing/playing against a real-life opponent, the anxiety being the fear of being

judged/critiqued or simple fear of losing ELO rating, should the game provide an ELO

system.

APPENDIX E: GLOSSARY UP2157533

114

Mortal Kombat – A fighting game stemming from 1990s arcade roots. Known

nowadays for its brutality and gore. Developed by NetherRealm Games.

Punish – The act of counter attacking while your opponent is in a state unable to defend,

or a “punishable” state, such as after whiffing an attack, or using an attack that is

punishable when blocked.

Super Mario Kart – Super Mario Kary is a kart racing game developed and published

by Nintendo for the Super Nintendo Entertainment System (SNES).

Whiff – A miss. An attack that has neither hit the opponent nor been blocked by the

opponent.

https://en.wikipedia.org/wiki/Kart_racing_game
https://en.wikipedia.org/wiki/Nintendo
https://en.wikipedia.org/wiki/Super_Nintendo_Entertainment_System

Bibliography

Beck, K., Beedle, M., Bennekum, van, Cockburn, A., Cunningham, W., Fowler, M.,

Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C.,

Mellor, S., Schwaber, K., Sutherland, J., & Thomas, D. (2001). Manifesto for agile

software development. Agile Manifesto; Agile Alliance. https://agilemanifesto.org/

Bengio, Y., Courville, A., & Vincent, P. (2014). Representation learning: a review and

new perspectives. https://arxiv.org/abs/1206.5538

Bueyes-Roiz, V., Quiñones-Uriostegui, I., Valencia, E., Alba, L., Quijano, Y., Anaya-

Campos, L. E., & Pérez-Orive, J. (2023). La competición de videojuegos como

desencadenante de ansiedad y sus implicaciones en la activación del músculo masetero.

Investigación En Discapacidad, 9, 47–55. https://doi.org/10.35366/111118

Chaperot, B., & Fyfe, C. (2006, May). Improving artificial intelligence in a motocross

game. Proceedings of the 2006 IEEE Symposium on Computational Intelligence and

Games (CIG06). https://doi.org/10.1109/cig.2006.311698

Cho, B. H., Park, C. J., & Yang, K. H. (2007). Comparison of AI techniques for fighting

action games - genetic Algorithms/Neural Networks/Evolutionary neural networks. In L.

Ma, M. Rauterberg, & R. Nakatsu (Eds.), Entertainment Computing - ICEC 2007 (pp.

55–65). Springer Berlin Heidelberg.

Chollet, F. (2021). Deep learning with python, second edition. Shelter Island, Ny

Manning Publications.

Chung, J., & Rho, S. (2019, March). Reinforcement learning in action: Creating arena

battle AI for “blade & soul.” GDCVault.

https://www.gdcvault.com/play/1026406/Reinforcement-Learning-in-Action-Creating

Hardesty, L. (2017, April). Explained: Neural networks. MIT News; Massachusetts

Institute of Technology. https://news.mit.edu/2017/explained-neural-networks-deep-

learning-0414

Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent neural

nets and problem solutions. International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems, 6, 107–116. https://doi.org/10.1142/s0218488598000094

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

Computation, 9, 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Hodges, A. (2010). Alan Turing scrapbook - Turing test. Turing.org.uk.

https://www.turing.org.uk/scrapbook/test.html

Hosch, W. L. (2025, February). Electronic fighting game. Encyclopedia Britannica.

https://www.britannica.com/topic/electronic-fighting-game

https://agilemanifesto.org/
https://www.britannica.com/topic/electronic-fighting-game

BIBLIOGRAPHY UP2157533

116

Intelligent Computer Entertainment lab. Ritsumeikan University. (2024). Welcome to the

fighting game AI competition. Ritsumei.ac.jp.

https://www.ice.ci.ritsumei.ac.jp/~ftgaic/index-1.html

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: a

survey. Journal of Artificial Intelligence Research, 4, 237–285.

https://doi.org/10.1613/jair.301

Längkvist, M., Alirezaie, M., Kiselev, A., & Loutfi, A. (2016, July). Interactive learning

with convolutional neural networks for image labeling. International Joint Conference on

Artificial Intelligence (IJCAI).

Leray, P., & Gallinari, P. (1999). Feature selection with neural networks.

Behaviormetrika, 26, 145–166. https://doi.org/10.1007/s41237-020-00127-3

Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2017).

Feature selection: A data perspective. ACM Comput. Surv., 50, 6.

https://doi.org/10.1145/3136625

Liu, B., Zhang, Z., Yan, J., Zhang, N., Zha, H., Li, G., Li, Y., & Yu, Q. (2020). A deep

learning approach with feature derivation and selection for overdue repayment

forecasting. Applied Sciences, 10, 23. https://doi.org/10.3390/app10238491

Liu, R. (2017). Creating human-like fighting game AI through planning.

Lueangrueangroj, S., & Kotrajaras, V. (2009). Real-time imitation based learning for

commercial fighting games. https://doi.org/10.5176/978-981-08-3190-5_301

Luo, J. J. (2019, September). An exploration of neural networks playing video games.

Medium; TDS Archive. https://medium.com/towards-data-science/an-exploration-of-

neural-networks-playing-video-games-3910dcee8e4a

Mohd, N. N., Hasen, A. W., & Rehman, M. Z. (2013). The effect of data pre-processing

on optimized training of artificial neural networks. Procedia Technology, 11, 32–39.

https://doi.org/10.1016/j.protcy.2013.12.159

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2012). Foundations of machine learning

(First Edition). The Mit Press.

Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2016). Introduction to time series

analysis and forecasting. Wiley.

Mozilla. (2019, November 28). The WebSocket API (WebSockets). MDN Web Docs.

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

https://doi.org/10.1613/jair.301

BIBLIOGRAPHY UP2157533

117

Novac, O.-C., Cristian, C. M., Novac, C. M., Bizon, N., Oproescu, M., Stan, O. P., &

Gordan, C. E. (2022). Analysis of the application efficiency of TensorFlow and PyTorch

in convolutional neural network. Sensors, 22, 8872. https://doi.org/10.3390/s22228872

Oh, I., Rho, S., Moon, S., Son, S., Lee, H., & Chung, J. (2020, January). Creating pro-

level AI for a real-time fighting game using deep reinforcement learning. Arxiv.org.

https://arxiv.org/abs/1904.03821

Pluhar, E., McCracken, C., Griffith, K. L., Christino, M. A., Sugimoto, D., & William.

(2018). Team sport athletes may be less likely to suffer anxiety or depression than

individual sport athletes. Journal of Sports Science & Medicine, 18, 490–496.

Polyrogue Games. (2019, July). Neural knight - self playing for honor neural network.

YouTube. https://www.youtube.com/watch?v=KWePzuZZ9WU

Rezaei-Dastjerdehei, M. R., Mijani, A., & Fatemizadeh, E. (2020). Addressing

imbalance in multi-label classification using weighted cross entropy loss function. 333–

338. https://doi.org/10.1109/ICBME51989.2020.9319440

Robison, A. D. (2017). Neural network AI for FightingICE | ORKG ask. Orkg.org.

https://ask.orkg.org/item/84280164/Neural-Network-AI-for-FightingICE

Ruby, U., & Yendapalli, V. (2020). Binary cross entropy with deep learning technique

for Image classification. International Journal of Advanced Trends in Computer Science

and Engineering, 9. https://doi.org/10.30534/ijatcse/2020/175942020

Seijen, van. (2011). Reinforcement learning under space and time constraints.

https://doi.org/10.13140/2.1.2701.4409

Sethbling. (2017, November). MariFlow - self-driving Mario kart w/Recurrent neural

network. YouTube. https://www.youtube.com/watch?v=Ipi40cb_RsI

Stančin, I., & Jović, A. (2019). An overview and comparison of free Python libraries for

data mining and big data analysis. 2019 42nd International Convention on Information

and Communication Technology, Electronics and Microelectronics (MIPRO), 977–982.

https://doi.org/10.23919/MIPRO.2019.8757088

T. Kavzoglu, & Mather, M. (2002). The role of feature selection in artificial neural

network applications. International Journal of Remote Sensing, 23, 15.

https://doi.org/10.1080/01431160110107743

Taha, A. A., & Hanbury, A. (2015). Metrics for evaluating 3D medical image

segmentation: analysis, selection, and tool. BMC Medical Imaging, 15(1), 29.

https://doi.org/10.1186/s128800150068x

Team, K. (2019). Keras documentation: The functional API. Keras.io.

https://keras.io/guides/functional_api/#introduction

BIBLIOGRAPHY UP2157533

118

Thesing, T., Feldmann, C., & Burchardt, M. (2021). Agile versus waterfall project

management: Decision model for selecting the appropriate approach to a project.

Procedia Computer Science, 181, 746–756. https://doi.org/10.1016/j.procs.2021.01.227

Whalen, S. J. (2013). Cyberathletes’ lived experience of video game tournaments.

Ying, X. (2019). An overview of overfitting and its solutions. Journal of Physics:

Conference Series, 1168, 022022. https://doi.org/10.1088/1742-6596/1168/2/022022

Zell, A. (1994). Simulation neuronaler netze. Vieweg+Teubner Verlag Wiesbaden.

Zhong, Y., Ren, Y., Cao, G., Li, F., & Qi, H. (2025). Optimal starting point for time

series forecasting. Expert Systems with Applications, 273, 126798.

https://doi.org/10.1016/j.eswa.2025.126798

Zoet, Z. M. (2017). Competitive state anxiety in online competitive gaming: “Ladder

anxiety.”

	Introduction
	1.1 Footsies, Neural Networks, and Ladder Anxiety
	1.2 Project Aim, and Objectives
	1.2.1 Project Aim
	1.2.2 Project Objectives

	1.3 Project Constraints
	1.4 Log of Risks
	1.5 Project Deliverables
	1.6 Project Approach
	1.6.1 The Agile Project Management Methodology

	1.7 Research Approach
	1.7.1 Time Management

	1.8 Legal, Ethical, Professional, and Social Issues
	1.8.1 Legal
	1.8.2 Ethical
	1.8.3 Professional
	1.8.4 Social

	1.9 Summary

	Literature Review
	2.
	2.1 Introduction
	2.2 Evaluation of Existing Solutions and Utilised Methods
	2.3 Summary

	The Artefact
	3.
	3.1 Introduction
	3.2 Requirement Specification
	3.2.1 Must Have
	3.2.2 Should Have
	3.2.3 Could Have
	3.2.4 Won’t Have

	3.3 Summary

	IT Design
	4.
	4.1 Introduction
	4.2 The Director
	4.3 The Middleman
	4.4 Pre-processing the Data
	4.4.1 Parsing the Data
	4.4.2 Normalisation

	4.5 The Neural Network
	4.6 Selection of API and Programming Language
	4.7 Selection of Programming Language
	4.8 Data Design
	4.9 Feature Engineering
	4.10 Model Architecture
	4.11 Training Pipeline
	4.12 Summary

	Development
	5.
	5.1 Introduction
	5.2 The Director
	5.2.1 Function Implementation
	5.2.2 Farming Training Data

	5.3 The Middleman
	5.3.1 The Footsies Client
	5.3.2 The Python Server
	5.3.3 Controlling the Client and Server

	5.4 Pre-processing
	5.4.1 Parsing the Data
	5.4.2 Normalising the Data

	5.5 The Neural Network
	5.5.1 Sequence Generation
	5.5.2 Model Creation
	5.5.3 Main Method

	5.6 Game Integration
	5.6.1 The Predictor Class
	5.6.2 Pre-Processing Live Inputs
	5.6.3 Predictions
	5.6.4 The Director and The Middleman

	5.7 GitHub Release
	5.8 Summary

	Testing
	6.
	6.1 Introduction
	6.2 Initial Model Results
	6.3 Validation Metrics and Loss Functions
	6.3.1 Weighted Binary Cross Entropy
	6.3.2 F Score and Leniency

	6.4 Hyperparameter Tuning
	6.5 Feature Engineering
	6.6 Choosing the Final Model
	6.7 Final Model Ability
	6.8 Summary

	Evaluation
	7.
	7.1 Introduction
	7.2 Evaluation Against Requirements
	7.3 Evaluation Against the Project Problem
	7.4 Evaluation of the Agile PMM
	7.5 Critiques

	Conclusion
	8.
	8.1 Conclusions
	8.2 Project Aim
	8.3 Future Considerations
	8.4 Final Reflection

	Appendix A: Ethics Form
	Appendix B: Gantt Chart
	Appendix C: Project Initiation Document
	Appendix D: Logs
	Appendix E: Glossary
	Bibliography

